Enfoque diagnóstico de las leucemias mieloides agudas pediátricas

  • D. Cristina López-Jiménez Hospital San Vicente Fundación
  • Natalia M. Guevara-Arismendy Laboratorio Clínico Hematológico
Palabras clave: leucemia, leucemia mieloide, leucemia mieloide aguda, citometría de flujo, médula ósea, citogenética.

Resumen

Las leucemias son la primera causa de muerte por enfermedad en niños en Colombia, incluso representan la mitad de las muertes por cáncer pediátrico en el país. En la actualidad, la Organización Mundial de la Salud, en conjunto con expertos internacionales, ha actualizado los criterios para la clasificación y el diagnóstico de las neoplasias hematolinfoides, de manera que, con base en todas las pruebas diagnósticas disponibles y las manifestaciones clínicas, se logre el diagnóstico, pronóstico y tratamiento adecuado para cada paciente. No obstante, no todas las herramientas diagnósticas están al alcance en nuestro medio, por lo que se requiere una adecuada interpretación y uso racional de las técnicas disponibles para lograr la clasificación y estadificación más acertada de los pacientes. En términos generales, las leucemias agudas incluyen las mieloides y las linfoides agudas, las cuales presentan diferencias importantes en su origen celular y genético, epidemiología, comportamiento clínico, pronóstico y tratamiento. En este módulo se revisa específicamente la clasificación y el diagnóstico de las leucemias mieloides agudas, con énfasis en las de mayor interés para la población pediátrica.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

D. Cristina López-Jiménez, Hospital San Vicente Fundación

Microbióloga y Bioanalista. Bacterióloga Hospital Universitario de San Vicente Fundación. Medellín, Colombia.

Natalia M. Guevara-Arismendy, Laboratorio Clínico Hematológico

Microbióloga y Bioanalista. MSc en Microbiología y Bioanálisis, con énfasis en Hematología. Bacterióloga Laboratorio Clínico Hematológico. Medellín, Colombia.

Referencias bibliográficas

Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. Globocan 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. Organización Mundial de la Salud, International Agency for Research on Cancer. 2012. Disponible: http://globocan.iarc.fr/old/age-specific_table_r.asp?selection=40170&title=Colombia&sex=0&type=1&stat=0&window=1&sort=0&submit=%C2%A0Execute, http://globocan.iarc.fr/old/age-specific_table_r.asp?selection=40170&title=Colombia&sex=0&type=0&stat=0&window=1&sort=0&submit=%C2%A0Execute. Consultado: ago 2015.

Yamamoto JF, Goodman MT. Patterns of leukemia incidence in the United States by subtype and demographic characteristics, 1997-2002. Cancer Causes Control 2008; 19: 379-390.

https://doi.org/10.1007/s10552-007-9097-2

Deschler B, Lubbert M. Acute myeloid leukemia: epidemiology and etiology. Cancer 2006; 107: 2099-2107.

https://doi.org/10.1002/cncr.22233

de Lima MC, da Silva DB, Freund AP, Dacoregio JS, Costa Tel J, Costa I, et al. Acute Myeloid Leukemia: analysis of epidemiological profile and survival rate. J Pediatr (Rio J) 2016; 92: 283-289.

https://doi.org/10.1016/j.jped.2015.08.008

Puumala SE, Ross JA, Aplenc R, Spector LG. Epidemiology of childhood acute myeloid leukemia. Pediatr Blood Cancer 2013; 60: 728-733.

https://doi.org/10.1002/pbc.24464

Linabery AM, Ross JA. Trends in childhood cancer incidence in the U.S. (1992-2004). Cancer 2008; 112: 416-432.

https://doi.org/10.1002/cncr.23169

Gamis AS, Alonzo TA, Perentesis JP, Meshinchi S. Children's Oncology Group's 2013 blueprint for research: acute myeloid leukemia. Pediatr Blood Cancer 2013; 60: 964-971.

https://doi.org/10.1002/pbc.24432

Bayona-Camelo R. Informe final cáncer en menores de 18 años, Colombia 2014. Bogotá D.C., Colombia: Instituto Nacional de Salud. 2014. Disponible: http://www.ins.gov.co/lineas-de-accion/Subdireccion-Vigilancia/Informe%20de%20Evento%20Epidemiolgico/Cancer%20en%20menores%20de%2018%20a%C3%B1os%202014.pdf. Consultado: ago 2015.

Vera AM, Pardo C, Duarte MC, Suárez A. Análisis de la mortalidad por leucemia aguda pediátrica en el Instituto Nacional de Cancerología. Biomédica 2012; 32: 355-364.

https://doi.org/10.7705/biomedica.v32i3.691

República de Colombia, Ministerio de Salud y Protección Social, Instituto Nacional de Salud. Protocolo de Vigilancia en Salud Pública: Leucemias. Bogotá D.C., Colombia. 2014. Disponible: http://www.ipsunipamplona.com/es/images/sampledata/sivigila_2015/protocolos_epidemiologicos/PRO%20Leucemias.pdf. Consultado: ago 2015.

Piñeros M, Pardo C, Otero J, Suarez A, Vizcaíno M, Garcia S, et al. Protocolo de vigilancia centinela en salud pública de las leucemias agudas pediátricas. Bogotá D.C., Colombia: República de Colombia, Ministerio de Salud y Protección Social, Instituto Nacional de Salud, Instituto Nacional de Cancerología. 2008. Disponible: http://www.saludcapital.gov.co/sitios/VigilanciaSaludPublica/Todo%20Cronicas/Leucemias%20Agudas%201.pdf. Consultado: ago 2015.

Harris N, Campo E, Jaffe ES, Pileri S, Stein H, Swerdlow SH, et al. Introduction to the WHO classification of tumours of haematopoietic and lymphoid tissues. En: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, Francia: Who Press; 2008: 14-16.

Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127: 2391-2405.

https://doi.org/10.1182/blood-2016-03-643544

Vardiman JW, Brunning AD, Arter DA, Beau MML, Porwit A, retten A, et al. Introduction and Overview of the Classification of the Myeloid Neoplasms. En: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, Francia: Who Press; 2008: 17-30.

PDQ Pediatric Treatment Editorial Board. Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies Treatment (PDQ(R)): Health Professional Version. PDQ Cancer Information Summaries. Bethesda (MD); 2002.

Lanzkowsky P. Leukemias. En: Lanzkowsky P, ed. Manual of Pediatric Hematology and Oncology (ed 4a). Massachusetts, Estados Unidos: Elsevier Academic Press; 2005: 415-452.

https://doi.org/10.1016/B978-012088524-4/50018-2

García-Bernal M, Badell-Serra I. Leucemia en la infancia, signos de alerta. An Pediatr Contin 2012; 10: 1-7.

https://doi.org/10.1016/S1696-2818(12)70058-6

Instituto de Evaluación Tecnológica en Salud (IETS), Centro Nacional de Investigación en Evidencia y Tecnologías en Salud (CINETS). Guía de Práctica Clínica para la detección oportuna, diagnóstico y seguimiento de leucemia linfoide aguda y leucemia mieloide aguda en niños, niñas y adolescentes. Guía No. 9. Bogotá D.C., Colombia: República de Colombia, Ministerio de Salud y Protección Social, Colciencias. 2013. Disponible: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/INEC/IETS/GPC_Comple_Leucemia.pdf. Consultado: ago 2015.

Campuzano-Maya G. Interpretación del hemograma automatizado: claves para una mejor utilización de la prueba. Medicina & Laboratorio 2013; 19: 11-68.

Floyd CN, Goodman T, Becker S, Chen N, Mustafa A, Schofield E, et al. Increased platelet expression of glycoprotein IIIa following aspirin treatment in aspirin-resistant but not aspirin-sensitive subjects. Br J Clin Pharmacol 2014; 78: 320-328.

https://doi.org/10.1111/bcp.12335

Rollig C, Ehninger G. How I treat hyperleukocytosis in acute myeloid leukemia. Blood 2015; 125: 3246-3252.

https://doi.org/10.1182/blood-2014-10-551507

Barnes PW, McFadden SL, Machin SJ, Simson E. The international consensus group for hematology review: suggested criteria for action following automated CBC and WBC differential analysis. Lab Hematol 2005; 11: 83-90.

https://doi.org/10.1532/LH96.05019

International Society for Laboratory Hematology. Consensus Guidelines: Suggested Criteria for Action Following Automated CBC and WBC Differential Analysis. 2015. Disponible: http://www.islh.org/web/consensus_rules.php. Consultado: abr 2016.

Creutzig U, van den Heuvel-Eibrink MM, Gibson B, Dworzak MN, Adachi S, de Bont E, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood 2012; 120: 3187-3205.

https://doi.org/10.1182/blood-2012-03-362608

Burger B, Zimmermann M, Mann G, Kuhl J, Loning L, Riehm H, et al. Diagnostic cerebrospinal fluid examination in children with acute lymphoblastic leukemia: significance of low leukocyte counts with blasts or traumatic lumbar puncture. J Clin Oncol 2003; 21: 184-188.

https://doi.org/10.1200/JCO.2003.04.096

Arber DA, Brunning RD, Beau MML, Falini B, Vardiman JW, Porwit A, et al. Acute myeloid leukaemia with recurrent genetic abnormalities. En: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, Francia: Who Press; 2008: 110-123.

Creutzig U, Harbott J, Sperling C, Ritter J, Zimmermann M, Loffler H, et al. Clinical significance of surface antigen expression in children with acute myeloid leukemia: results of study AML-BFM-87. Blood 1995; 86: 3097-3108.

https://doi.org/10.1182/blood.V86.8.3097.3097

Balgobind BV, Zwaan CM, Pieters R, Van den Heuvel-Eibrink MM. The heterogeneity of pediatric MLL-rearranged acute myeloid leukemia. Leukemia 2011; 25: 1239-1248.

https://doi.org/10.1038/leu.2011.90

Balgobind BV, Raimondi SC, Harbott J, Zimmermann M, Alonzo TA, Auvrignon A, et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood 2009; 114: 2489-2496.

https://doi.org/10.1182/blood-2009-04-215152

Arber DA, Heerema-McKenney A. Acute Myeloid Leukemia. En: Jaffe ES, Harris NL, Vardiman JW, Campo E, Arber DA, eds. Hematopathology. Filadelfia, Estados Unidos: Saunders/Elsevier; 2011: 672-697.

https://doi.org/10.1016/B978-0-7216-0040-6.00045-9

Ostronoff F, Othus M, Gerbing RB, Loken MR, Raimondi SC, Hirsch BA, et al. NUP98/NSD1 and FLT3/ITD coexpression is more prevalent in younger AML patients and leads to induction failure: a COG and SWOG report. Blood 2014; 124: 2400-2407.

https://doi.org/10.1182/blood-2014-04-570929

Hollink IH, van den Heuvel-Eibrink MM, Arentsen-Peters ST, Pratcorona M, Abbas S, Kuipers JE, et al. NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern. Blood 2011; 118: 3645-3656.

https://doi.org/10.1182/blood-2011-04-346643

Stasevich I, Utskevich R, Kustanovich A, Litvinko N, Savitskaya T, Chernyavskaya S, et al. Translocation (10;11)(p12;q23) in childhood acute myeloid leukemia: incidence and complex mechanism. Cancer Genet Cytogenet 2006; 169: 114-120.

https://doi.org/10.1016/j.cancergencyto.2006.03.011

Lillington DM, Young BD, Berger R, Martineau M, Moorman AV, Secker-Walker LM. The t(10;11)(p12;q23) translocation in acute leukaemia: a cytogenetic and clinical study of 20 patients. European 11q23 Workshop participants. Leukemia 1998; 12: 801-804.

https://doi.org/10.1038/sj.leu.2401015

de Rooij JD, Hollink IH, Arentsen-Peters ST, van Galen JF, Berna Beverloo H, Baruchel A, et al. NUP98/JARID1A is a novel recurrent abnormality in pediatric acute megakaryoblastic leukemia with a distinct HOX gene expression pattern. Leukemia 2013; 27: 2280-2288.

https://doi.org/10.1038/leu.2013.87

Panagopoulos I, Isaksson M, Billstrom R, Strombeck B, Mitelman F, Johansson B. Fusion of the NUP98 gene and the homeobox gene HOXC13 in acute myeloid leukemia with t(11;12)(p15;q13). Genes Chromosomes Cancer 2003; 36: 107-112.

https://doi.org/10.1002/gcc.10139

Tarlock K, Meshinchi S. Pediatric acute myeloid leukemia: biology and therapeutic implications of genomic variants. Pediatr Clin North Am 2015; 62: 75-93.

https://doi.org/10.1016/j.pcl.2014.09.007

Gruber TA, Larson Gedman A, Zhang J, Koss CS, Marada S, Ta HQ, et al. An Inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia. Cancer Cell 2012; 22: 683-697.

https://doi.org/10.1016/j.ccr.2012.10.007

Masetti R, Pigazzi M, Togni M, Astolfi A, Indio V, Manara E, et al. CBFA2T3-GLIS2 fusion transcript is a novel common feature in pediatric, cytogenetically normal AML, not restricted to FAB M7 subtype. Blood 2013; 121: 3469-3472.

https://doi.org/10.1182/blood-2012-11-469825

Sandahl JD, Coenen EA, Forestier E, Harbott J, Johansson B, Kerndrup G, et al. t(6;9)(p22;q34)/DEK-NUP214-rearranged pediatric myeloid leukemia: an international study of 62 patients. Haematologica 2014; 99: 865-872.

https://doi.org/10.3324/haematol.2013.098517

Ma Z, Morris SW, Valentine V, Li M, Herbrick JA, Cui X, et al. Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat Genet 2001; 28: 220-221.

https://doi.org/10.1038/90054

Coombs CC, Tavakkoli M, Tallman MS. Acute promyelocytic leukemia: where did we start, where are we now, and the future. Blood Cancer J 2015; 5: e304.

https://doi.org/10.1038/bcj.2015.25

de The H, Chomienne C, Lanotte M, Degos L, Dejean A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 1990; 347: 558-561.

https://doi.org/10.1038/347558a0

Longo L, Pandolfi PP, Biondi A, Rambaldi A, Mencarelli A, Lo Coco F, et al. Rearrangements and aberrant expression of the retinoic acid receptor alpha gene in acute promyelocytic leukemias. J Exp Med 1990; 172: 1571-1575.

https://doi.org/10.1084/jem.172.6.1571

Wang ZY, Chen Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 2008; 111: 2505-2515.

https://doi.org/10.1182/blood-2007-07-102798

Taga T, Tomizawa D, Takahashi H, Adachi S. Acute myeloid leukemia in children: Current status and future directions. Pediatr Int 2016; 58: 71-80.

https://doi.org/10.1111/ped.12865

Zhang L, Samad A, Pombo-de-Oliveira MS, Scelo G, Smith MT, Feusner J, et al. Global characteristics of childhood acute promyelocytic leukemia. Blood Rev 2015; 29: 101-125.

https://doi.org/10.1016/j.blre.2014.09.013

Forestier E, Heim S, Blennow E, Borgstrom G, Holmgren G, Heinonen K, et al. Cytogenetic abnormalities in childhood acute myeloid leukaemia: a Nordic series comprising all children enrolled in the NOPHO-93-AML trial between 1993 and 2001. Br J Haematol 2003; 121: 566-577.

https://doi.org/10.1046/j.1365-2141.2003.04349.x

Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002; 100: 4325-4336.

https://doi.org/10.1182/blood-2002-03-0772

Ayton PM, Cleary ML. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001; 20: 5695-5707.

https://doi.org/10.1038/sj.onc.1204639

Jones LK, Neat MJ, van Delft FW, Mitchell MP, Adamaki M, Stoneham SJ, et al. Cryptic rearrangement involving MLL and AF10 occurring in utero. Leukemia 2003; 17: 1667-1669.

https://doi.org/10.1038/sj.leu.2403039

Sambani C, La Starza R, Roumier C, Crescenzi B, Stavropoulou C, Katsarou O, et al. Partial duplication of the MLL oncogene in patients with aggressive acute myeloid leukemia. Haematologica 2004; 89: 403-407.

Raimondi SC, Chang MN, Ravindranath Y, Behm FG, Gresik MV, Steuber CP, et al. Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative pediatric oncology group study-POG 8821. Blood 1999; 94: 3707-3716.

von Bergh A, Emanuel B, van Zelderen-Bhola S, Smetsers T, van Soest R, Stul M, et al. A DNA probe combination for improved detection of MLL/11q23 breakpoints by double-color interphase-FISH in acute leukemias. Genes Chromosomes Cancer 2000; 28: 14-22.

https://doi.org/10.1002/(SICI)1098-2264(200005)28:1<14::AID-GCC2>3.0.CO;2-X

Dyson MJ, Talley PJ, Reilly JT, Stevenson D, Parsons E, Tighe J. Detection of cryptic MLL insertions using a commercial dual-color fluorescence in situ hybridization probe. Cancer Genet Cytogenet 2003; 147: 81-83.

https://doi.org/10.1016/S0165-4608(03)00158-4

Wuchter C, Harbott J, Schoch C, Schnittger S, Borkhardt A, Karawajew L, et al. Detection of acute leukemia cells with mixed lineage leukemia (MLL) gene rearrangements by flow cytometry using monoclonal antibody 7.1. Leukemia 2000; 14: 1232-1238.

https://doi.org/10.1038/sj.leu.2401840

Lagunas-Rangel FA. Leucemia mieloide aguda. Una perspectiva de los mecanismos moleculares del cáncer. GAMO 2016; 15: 150-157.

https://doi.org/10.1016/j.gamo.2016.05.007

Patel JP, Gönen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, et al. Prognostic Relevance of Integrated Genetic Profiling in Acute Myeloid Leukemia. N Engl J Med 2012; 366: 1079-1089.

https://doi.org/10.1056/NEJMoa1112304

Verhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W, et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 2005; 106: 3747-3754.

https://doi.org/10.1182/blood-2005-05-2168

Falini B, Bolli N, Liso A, Martelli MP, Mannucci R, Pileri S, et al. Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: molecular basis and clinical implications. Leukemia 2009; 23: 1731-1743.

https://doi.org/10.1038/leu.2009.124

Leroy H, Roumier C, Huyghe P, Biggio V, Fenaux P, Preudhomme C. CEBPA point mutations in hematological malignancies. Leukemia 2005; 19: 329-334.

https://doi.org/10.1038/sj.leu.2403614

Pabst T, Mueller BU. Complexity of CEBPA dysregulation in human acute myeloid leukemia. Clin Cancer Res 2009; 15: 5303-5307.

https://doi.org/10.1158/1078-0432.CCR-08-2941

Schnittger S, Dicker F, Kern W, Wendland N, Sundermann J, Alpermann T, et al. RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an unfavorable prognosis. Blood 2011; 117: 2348-2357.

https://doi.org/10.1182/blood-2009-11-255976

Mendler JH, Maharry K, Radmacher MD, Mrozek K, Becker H, Metzeler KH, et al. RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and MicroRNA expression signatures. J Clin Oncol 2012; 30: 3109-3118.

https://doi.org/10.1200/JCO.2011.40.6652

Gaidzik VI, Bullinger L, Schlenk RF, Zimmermann AS, Rock J, Paschka P, et al. RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group. J Clin Oncol 2011; 29: 1364-1372.

https://doi.org/10.1200/JCO.2010.30.7926

Conway O'Brien E, Prideaux S, Chevassut T. The epigenetic landscape of acute myeloid leukemia. Adv Hematol 2014; 2014: 103175.

https://doi.org/10.1155/2014/103175

Fong CY, Morison J, Dawson MA. Epigenetics in the hematologic malignancies. Haematologica 2014; 99: 1772-1783.

https://doi.org/10.3324/haematol.2013.092007

Virappane P, Gale R, Hills R, Kakkas I, Summers K, Stevens J, et al. Mutation of the Wilms' tumor 1 gene is a poor prognostic factor associated with chemotherapy resistance in normal karyotype acute myeloid leukemia: the United Kingdom Medical Research Council Adult Leukaemia Working Party. J Clin Oncol 2008; 26: 5429-5435.

https://doi.org/10.1200/JCO.2008.16.0333

Renneville A, Boissel N, Zurawski V, Llopis L, Biggio V, Nibourel O, et al. Wilms tumor 1 gene mutations are associated with a higher risk of recurrence in young adults with acute myeloid leukemia: a study from the Acute Leukemia French Association. Cancer 2009; 115: 3719-3727.

https://doi.org/10.1002/cncr.24442

Summers K, Stevens J, Kakkas I, Smith M, Smith LL, Macdougall F, et al. Wilms' tumour 1 mutations are associated with FLT3-ITD and failure of standard induction chemotherapy in patients with normal karyotype AML. Leukemia 2007; 21: 550-551; author reply 552.

https://doi.org/10.1038/sj.leu.2404514

Gaidzik VI, Schlenk RF, Moschny S, Becker A, Bullinger L, Corbacioglu A, et al. Prognostic impact of WT1 mutations in cytogenetically normal acute myeloid leukemia: a study of the German-Austrian AML Study Group. Blood 2009; 113: 4505-4511.

https://doi.org/10.1182/blood-2008-10-183392

Cuervo-Sierra J, Jaime-Pérez JC, Gómez-Almaguer D. Mutaciones del módulo FLT3 en leucemia aguda mieloblástica. Rev Hematol Mex 2012; 13: 177-184.

Krstovski N, Tosic N, Janic D, Dokmanovic L, Kuzmanovic M, Spasovski V, et al. Incidence of FLT3 and nucleophosmin gene mutations in childhood acute myeloid leukemia: Serbian experience and the review of the literature. Med Oncol 2010; 27: 640-645.

https://doi.org/10.1007/s12032-009-9261-5

Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK, et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001; 97: 89-94.

https://doi.org/10.1182/blood.V97.1.89

Ravandi F, Kantarjian H, Faderl S, Garcia-Manero G, O'Brien S, Koller C, et al. Outcome of patients with FLT3-mutated acute myeloid leukemia in first relapse. Leuk Res 2010; 34: 752-756.

https://doi.org/10.1016/j.leukres.2009.10.001

Small D. FLT3 mutations: biology and treatment. Hematology Am Soc Hematol Educ Program 2006: 178-184.

https://doi.org/10.1182/asheducation-2006.1.178

Manara E, Basso G, Zampini M, Buldini B, Tregnago C, Rondelli R, et al. Characterization of children with FLT3-ITD acute myeloid leukemia: a report from the AIEOP AML-2002 study group. Leukemia 2016.

https://doi.org/10.1038/leu.2016.177

Gao W, Estey E. Moving toward targeted therapies in acute myeloid leukemia. Clin Adv Hematol Oncol 2015; 13: 748-754.

Arber DA, Brunning RD, Orazi A, Porwit A, Peterson L, Thiele J, et al. Acute myeloid leukaemia, not otherwise specified. En: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, Francia: Who Press; 2008: 130-139.

Caldwell JT, Ge Y, Taub JW. Prognosis and management of acute myeloid leukemia in patients with Down syndrome. Expert Rev Hematol 2014; 7: 831-840.

https://doi.org/10.1586/17474086.2014.959923

Gamis AS, Alonzo TA, Gerbing RB, Hilden JM, Sorrell AD, Sharma M, et al. Natural history of transient myeloproliferative disorder clinically diagnosed in Down syndrome neonates: a report from the Children's Oncology Group Study A2971. Blood 2011; 118: 6752-6759; quiz 6996.

https://doi.org/10.1182/blood-2011-04-350017

Zipursky A. Transient leukaemia--a benign form of leukaemia in newborn infants with trisomy 21. Br J Haematol 2003; 120: 930-938.

https://doi.org/10.1046/j.1365-2141.2003.04229.x

Groet J, McElwaine S, Spinelli M, Rinaldi A, Burtscher I, Mulligan C, et al. Acquired mutations in GATA1 in neonates with Down's syndrome with transient myeloid disorder. Lancet 2003; 361: 1617-1620.

https://doi.org/10.1016/S0140-6736(03)13266-7

Rainis L, Bercovich D, Strehl S, Teigler-Schlegel A, Stark B, Trka J, et al. Mutations in exon 2 of GATA1 are early events in megakaryocytic malignancies associated with trisomy 21. Blood 2003; 102: 981-986.

https://doi.org/10.1182/blood-2002-11-3599

Bruwier A, Chantrain CF. Hematological disorders and leukemia in children with Down syndrome. Eur J Pediatr 2012; 171: 1301-1307.

https://doi.org/10.1007/s00431-011-1624-1

Fernandez-Plaza S, Sevilla J, Contra T, Martin N, Madero L. [Acute leukemia in patients with Down syndrome]. An Pediatr (Barc) 2004; 61: 515-519.

https://doi.org/10.1157/13069185

Langebrake C, Creutzig U, Reinhardt D. Immunophenotype of Down syndrome acute myeloid leukemia and transient myeloproliferative disease differs significantly from other diseases with morphologically identical or similar blasts. Klin Padiatr 2005; 217: 126-134.

https://doi.org/10.1055/s-2005-836510

Seewald L, Taub JW, Maloney KW, McCabe ER. Acute leukemias in children with Down syndrome. Mol Genet Metab 2012; 107: 25-30.

https://doi.org/10.1016/j.ymgme.2012.07.011

Yoshida K, Toki T, Okuno Y, Kanezaki R, Shiraishi Y, Sato-Otsubo A, et al. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat Genet 2013; 45: 1293-1299.

https://doi.org/10.1038/ng.2759

Mansini AP, Rubio PL, Rossi JG, Gallego MS, Medina A, Zubizarreta PA, et al. Mutation characterization in the GATA-1 gene in patients with Down's Syndrome diagnosed with transient abnormal myelopoiesis or acute megakaryoblastic leukemia. Arch Argent Pediatr 2013; 111: 532-536.

https://doi.org/10.5546/aap.2013.eng.532

Creutzig U, Reinhardt D, Diekamp S, Dworzak M, Stary J, Zimmermann M. AML patients with Down syndrome have a high cure rate with AML-BFM therapy with reduced dose intensity. Leukemia 2005; 19: 1355-1360.

https://doi.org/10.1038/sj.leu.2403814

Chen SJ, Shen Y, Chen Z. A panoramic view of acute myeloid leukemia. Nat Genet 2013; 45: 586-587.

https://doi.org/10.1038/ng.2651

Cómo citar
1.
López-Jiménez DC, Guevara-Arismendy NM. Enfoque diagnóstico de las leucemias mieloides agudas pediátricas. Med. Lab. [Internet]. 1 de marzo de 2016 [citado 17 de octubre de 2021];22(3-4):111-46. Disponible en: https://medicinaylaboratorio.com/index.php/myl/article/view/71
Publicado
2016-03-01
Sección
La Clínica y el Laboratorio
Crossref Cited-by logo