Virus de Epstein-Barr: más que una mononucleosis infecciosa
Resumen
El virus de Epstein-Barr (VEB) fue el primer virus asociado a neoplasias en humanos. Infecta el 95 % de la población mundial, y aunque usualmente es asintomático, puede causar mononucleosis infecciosa y se relaciona con más de 200.000 casos de neoplasias al año. De igual forma, se asocia con esclerosis múltiple y otras enfermedades autoinmunes. A pesar de ser catalogado como un virus oncogénico, solo un pequeño porcentaje de los individuos infectados desarrollan neoplasias asociadas a VEB. Su persistencia involucra la capacidad de alternar entre una serie de programas de latencia, y de reactivarse cuando tiene la necesidad de colonizar nuevas células B de memoria, con el fin de sostener una infección de por vida y poder transmitirse a nuevos hospederos. En esta revisión se presentan las generalidades del VEB, además de su asociación con varios tipos de neoplasias, como son el carcinoma nasofaríngeo, el carcinoma gástrico, el linfoma de Hodgkin y el linfoma de Burkitt, y la esclerosis múltiple. Adicionalmente, se describen los mecanismos fisiopatológicos de las diferentes entidades, algunos de ellos no completamente dilucidados.
Descargas
Referencias bibliográficas
Wong Y, Meehan MT, Burrows SR, Doolan DL, Miles JJ. Estimating the global burden of Epstein-Barr virus-related cancers. J Cancer Res Clin Oncol 2022;148:31-46. https://doi.org/10.1007/s00432-021-03824-y.
Damania B, Kenney SC, Raab-Traub N. Epstein-Barr virus: Biology and clinical disease. Cell 2022;185:3652-3670. https://doi.org/10.1016/j.cell.2022.08.026.
Fugl A, Andersen CL. Epstein-Barr virus and its association with disease - a review of relevance to general practice. BMC Fam Pract 2019;20:62. https://doi.org/10.1186/s12875-019-0954-3.
Münz C. Latency and lytic replication in Epstein-Barr virus-associated oncogenesis. Nat Rev Microbiol 2019;17:691-700. https://doi.org/10.1038/s41579-019-0249-7.
Patel PD, Alghareeb R, Hussain A, Maheshwari MV, Khalid N. The association of Epstein-Barr virus with cancer. Cureus 2022;14:e26314. https://doi.org/10.7759/cureus.26314.
Läderach F, Münz C. Altered immune response to the Epstein-Barr virus as a prerequisite for multiple sclerosis. Cells 2022;11:2757. https://doi.org/10.3390/cells11172757.
Guo R, Gewurz BE. Epigenetic control of the Epstein-Barr lifecycle. Curr Opin Virol 2022;52:78-88. https://doi.org/10.1016/j.coviro.2021.11.013.
Hau PM, Lung HL, Wu M, Tsang CM, Wong KL, Mak NK, et al. Targeting Epstein-Barr virus in nasopharyngeal carcinoma. Front Oncol 2020;10:600. https://doi.org/10.3389/fonc.2020.00600.
Soldan SS, Lieberman PM. Epstein-Barr virus and multiple sclerosis. Nat Rev Microbiol 2022; 1-14. [Epub ahead of print] 5 de agosto de 2022;. https://doi.org/10.1038/s41579-022-00770-5.
Albanese M, Tagawa T, Hammerschmidt W. Strategies of Epstein-Barr virus to evade innate antiviral immunity of its human host. Front Microbiol 2022;13:955603. https://doi.org/10.3389/fmicb.2022.955603.
Weidner-Glunde M, Kruminis-Kaszkiel E, Savanagouder M. Herpesviral latency-common themes. Pathogens 2020;9:125. https://doi.org/10.3390/pathogens9020125.
Frappier L. Epstein-Barr virus: Current questions and challenges. Tumour Virus Res 2021;12:200218. https://doi.org/10.1016/j.tvr.2021.200218.
Di Pietro A. Epstein-Barr virus promotes B cell lymphomas by manipulating the host epigenetic machinery. Cancers (Basel) 2020;12:3037. https://doi.org/10.3390/cancers12103037.
Houen G, Trier NH, Frederiksen JL. Epstein-Barr virus and multiple sclerosis. Front Immunol 2020;11:587078. https://doi.org/10.3389/fimmu.2020.587078.
Yang J, Liu Z, Zeng B, Hu G, Gan R. Epstein-Barr virus-associated gastric cancer: A distinct subtype. Cancer Lett 2020;495:191-199. https://doi.org/10.1016/j.canlet.2020.09.019.
Pagano JS, Whitehurst CB, Andrei G. Antiviral drugs for EBV. Cancers (Basel) 2018;10:197. https://doi.org/10.3390/cancers10060197.
Chijioke O, Landtwing V, Münz C. NK cell influence on the outcome of primary Epstein-Barr virus infection. Front Immunol 2016;7:323. https://doi.org/10.3389/fimmu.2016.00323.
Wen KW, Wang L, Menke JR, Damania B. Cancers associated with human gammaherpesviruses. FEBS J 2021. [Epub ahead of print] 18 de septiembre de 2021. https://doi.org/10.1111/febs.16206.
Bakkalci D, Jia Y, Winter JR, Lewis JE, Taylor GS, Stagg HR. Risk factors for Epstein Barr virus-associated cancers: a systematic review, critical appraisal, and mapping of the epidemiological evidence. J Glob Health 2020;10:010405. https://doi.org/10.7189/jogh.10.010405.
de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health 2020;8:e180-e190. https://doi.org/10.1016/s2214-109x(19)30488-7.
Guikema JE, Schuuring E, Kluin PM. Structure and consequences of IGH switch breakpoints in Burkitt lymphoma. J Natl Cancer Inst Monogr 2008:32-36. https://doi.org/10.1093/jncimonographs/lgn020.
Carpenter LM, Newton R, Casabonne D, Ziegler J, Mbulaiteye S, Mbidde E, et al. Antibodies against malaria and Epstein-Barr virus in childhood Burkitt lymphoma: a case-control study in Uganda. Int J Cancer 2008;122:1319-1323. https://doi.org/10.1002/ijc.23254.
World Health Organization (WHO). The Global Cancer Observatory (Globocan). Ginebra, Suiza: WHO; 2020. Acceso 23 de octubre de 2022. Disponible en https://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf.
Murray PG, Young LS. An etiological role for the Epstein-Barr virus in the pathogenesis of classical Hodgkin lymphoma. Blood 2019;134:591-596. https://doi.org/10.1182/blood.2019000568.
Gopas J, Stern E, Zurgil U, Ozer J, Ben-Ari A, Shubinsky G, et al. Reed-Sternberg cells in Hodgkin's lymphoma present features of cellular senescence. Cell Death Dis 2016;7:e2457. https://doi.org/10.1038/cddis.2016.185.
Habeeb R, Al Hafar L, Monem F. EBV plasma Epstein-Barr virus (EBV) DNA as a biomarker for diagnosis of EBV-positive hodgkin lymphoma in Syria. J Infect Dev Ctries 2021;15:1917-1922. https://doi.org/10.3855/jidc.14919.
Spacek M, Hubacek P, Markova J, Zajac M, Vernerova Z, Kamaradova K, et al. Plasma EBV-DNA monitoring in Epstein-Barr virus-positive Hodgkin lymphoma patients. Apmis 2011;119:10-16. https://doi.org/10.1111/j.1600-0463.2010.02685.x.
Wang C, Zou SP, Chen DG, Wang JS, Zheng YB, Chen XR, et al. Latent Epstein-Barr virus infection status and prognosis in patients with newly diagnosed Hodgkin lymphoma in Southeast China: a single-center retrospective study. Hematology 2021;26:675-683. https://doi.org/10.1080/16078454.2021.1971864.
Martelli M, Ferreri AJ, Agostinelli C, Di Rocco A, Pfreundschuh M, Pileri SA. Diffuse large B-cell lymphoma. Crit Rev Oncol Hematol 2013;87:146-171. https://doi.org/10.1016/j.critrevonc.2012.12.009.
Malpica L, Marques-Piubelli ML, Beltran BE, Chavez JC, Miranda RN, Castillo JJ. EBV-positive diffuse large B-cell lymphoma, not otherwise specified: 2022 update on diagnosis, risk-stratification, and management. Am J Hematol 2022;97:951-965. https://doi.org/10.1002/ajh.26579.
Hwang J, Suh CH, Won Kim K, Kim HS, Armand P, Huang RY, et al. The incidence of Epstein-Barr virus-positive diffuse large B-cell lymphoma: A systematic review and meta-analysis. Cancers (Basel) 2021;13:1785. https://doi.org/10.3390/cancers13081785.
Syrykh C, Péricart S, Lamaison C, Escudié F, Brousset P, Laurent C. Epstein-Barr virus-associated T- and NK-cell lymphoproliferative diseases: A review of clinical and pathological features. Cancers (Basel) 2021;13:3315. https://doi.org/10.3390/cancers13133315.
Hue SS, Oon ML, Wang S, Tan SY, Ng SB. Epstein-Barr virus-associated T- and NK-cell lymphoproliferative diseases: an update and diagnostic approach. Pathology 2020;52:111-127. https://doi.org/10.1016/j.pathol.2019.09.011.
Fox CP, Civallero M, Ko YH, Manni M, Skrypets T, Pileri S, et al. Survival outcomes of patients with extranodal natural-killer T-cell lymphoma: a prospective cohort study from the international T-cell Project. Lancet Haematol 2020;7:e284-e294. https://doi.org/10.1016/s2352-3026(19)30283-2.
Banko A, Miljanovic D, Lazarevic I, Cirkovic A. A systematic review of Epstein-Barr virus latent membrane protein 1 (LMP1) gene variants in nasopharyngeal carcinoma. Pathogens 2021;10:1057. https://doi.org/10.3390/pathogens10081057.
Tsao SW, Tsang CM, Lo KW. Epstein-Barr virus infection and nasopharyngeal carcinoma. Philos Trans R Soc Lond B Biol Sci 2017;372:20160270. https://doi.org/10.1098/rstb.2016.0270.
Shao JY, Li YH, Gao HY, Wu QL, Cui NJ, Zhang L, et al. Comparison of plasma Epstein-Barr virus (EBV) DNA levels and serum EBV immunoglobulin A/virus capsid antigen antibody titers in patients with nasopharyngeal carcinoma. Cancer 2004;100:1162-1170. https://doi.org/10.1002/cncr.20099.
Alruwaii ZI, Montgomery EA. Select Epstein-Barr virus-associated digestive tract lesions for the practicing pathologist. Arch Pathol Lab Med 2021;145:562-570. https://doi.org/10.5858/arpa.2019-0703-RA.
Tavakoli A, Monavari SH, Solaymani-Mohammadi F, Kiani SJ, Armat S, Farahmand M. Association between Epstein-Barr virus infection and gastric cancer: a systematic review and meta-analysis. BMC Cancer 2020;20:493. https://doi.org/10.1186/s12885-020-07013-x.
Hirabayashi M, Georges D, Clifford GM, de Martel C. Estimating the global burden of Epstein-Barr virus-associated gastric cancer: A systematic review and meta-analysis. Clin Gastroenterol Hepatol 2022. https://doi.org/10.1016/j.cgh.2022.07.042.
Armenta-Quiroga AS, Khalid R, Dhalla PS, Garcia J, Bapatla A, Kaul A, et al. Essential genes to consider in Epstein-Barr virus-associated gastric cancer: A systematic review. Cureus 2020;12:e11610. https://doi.org/10.7759/cureus.11610.
Stanland LJ, Luftig MA. The role of EBV-induced hypermethylation in gastric cancer tumorigenesis. Viruses 2020;12:1222. https://doi.org/10.3390/v12111222.
Strong MJ, Xu G, Coco J, Baribault C, Vinay DS, Lacey MR, et al. Differences in gastric carcinoma microenvironment stratify according to EBV infection intensity: implications for possible immune adjuvant therapy. PLoS Pathog 2013;9:e1003341. https://doi.org/10.1371/journal.ppat.1003341.
Pyo JS, Kim NY, Kang DW. Clinicopathological significance of EBV-infected gastric carcinomas: A meta-analysis. Medicina (Kaunas) 2020;56:345. https://doi.org/10.3390/medicina56070345.
Houen G, Trier NH. Epstein-Barr virus and systemic autoimmune diseases. Front Immunol 2020;11:587380. https://doi.org/10.3389/fimmu.2020.587380.
Robinson WH, Steinman L. Epstein-Barr virus and multiple sclerosis. Science 2022;375:264-265. https://doi.org/10.1126/science.abm7930.
Balandraud N, Roudier J. Epstein-Barr virus and rheumatoid arthritis. Joint Bone Spine 2018;85:165-170. https://doi.org/10.1016/j.jbspin.2017.04.011.
Bar-Or A, Pender MP, Khanna R, Steinman L, Hartung HP, Maniar T, et al. Epstein-Barr virus in multiple sclerosis: Theory and emerging immunotherapies. Trends Mol Med 2020;26:296-310. https://doi.org/10.1016/j.molmed.2019.11.003.
Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022;375:296-301. https://doi.org/10.1126/science.abj8222.
Aloisi F, Salvetti M. Epstein-Barr virus and multiple sclerosis: supporting causality. Lancet Neurol 2022;21:300-301. https://doi.org/10.1016/s1474-4422(22)00086-2.
Wekerle H. Epstein-Barr virus sparks brain autoimmunity in multiple sclerosis. Nature 2022;603:230-232. https://doi.org/10.1038/d41586-022-00382-2.
Jacobs BM, Giovannoni G, Cuzick J, Dobson R. Systematic review and meta-analysis of the association between Epstein-Barr virus, multiple sclerosis and other risk factors. Mult Scler 2020;26:1281-1297. https://doi.org/10.1177/1352458520907901.
Hammami MB, Aboushaar R, Musmar A, Hammami S. Epstein-Barr virus-associated acute pancreatitis. BMJ Case Rep 2019;12:e231744. https://doi.org/10.1136/bcr-2019-231744.
Osorio JC, Blanco R, Corvalán AH, Muñoz JP, Calaf GM, Aguayo F. Epstein-Barr virus infection in lung cancer: Insights and perspectives. Pathogens 2022;11:132. https://doi.org/10.3390/pathogens11020132.
Oleynikova NA, Danilova NV, Grimuta MO, Malkov PG. Epstein-Barr virus in the development of colorectal cancer (review). Sovrem Tekhnologii Med 2021;13:82-91. https://doi.org/10.17691/stm2021.13.4.09.
Zhang N, Zuo Y, Jiang L, Peng Y, Huang X, Zuo L. Epstein-Barr virus and neurological diseases. Front Mol Biosci 2021;8:816098. https://doi.org/10.3389/fmolb.2021.816098.

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.