Depleción de eosinófilos: muchas implicaciones en modelos múridos, pocas estudiadas en humanos

Palabras clave: eosinófilos, homeostasis, depleción, medicamentos, biológicos, corticoides.

Resumen

El eosinófilo constituye una célula del sistema inmune, con un arsenal de sustancias que pueden alterar el equilibrio relativo que existe en los diferentes órganos que se encuentren. Con el advenimiento de los anticuerpos monoclonales, la preocupación por su depleción se ha convertido en un punto de inflexión importante a la hora de realizar su formulación. Por esta razón, es de vital importancia investigar las consecuencias de la acción de los biológicos, a corto y a largo plazo. Esta revisión intenta mostrar el papel de los eosinófilos tanto en la homeostasis como en las enfermedades, y la relación e interacción de estos con los medicamentos monoclonales en enfermedades centradas en el perfil Th2. Se espera que este artículo sea útil a la hora de tomar la decisión de iniciar el manejo con monoclonales, específicamente anti interleuquina-5 o contra su receptor.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Gloria María Gil, Universidad de Antioquia

Médica, Especialista en Alergología Clínica. Grupo de alergología clínica y experimental (GACE), Universidad de Antioquia. Medellín, Colombia. https://orcid.org/0000-0002-6371-9640

Ricardo Cardona, Universidad de Antioquia

Médico, Especialista en Alergología Clínica, MSc en Inmunología. Investigador, Grupo de Alergología Clínica y Experimental (GACE), Universidad de Antioquia. Investigador, ALLERGYTECH S.A.S. Medellín, Colombia. https://orcid.org/0000-0002-7428-2413

Referencias bibliográficas

Rothenberg ME, Hogan SP. The eosinophil. Annu Rev Immunol 2006;24:147-174. https://doi.org/10.1146/annurev.immunol.24.021605.090720.

Renz H, Bachert C, Berek C, Hamelmann E, Levi-Schaffer F, Raap U, et al. Physiology and pathology of eosinophils: Recent developments: Summary of the Focus Workshop Organized by DGAKI. Scand J Immunol 2021;93:e13032. https://doi.org/10.1111/sji.13032.

Jackson DJ, Akuthota P, Roufosse F. Eosinophils and eosinophilic immune dysfunction in health and disease. Eur Respir Rev 2022;31:210150. https://doi.org/10.1183/16000617.0150-2021.

Yamaguchi T, Takizawa F, Fischer U, Dijkstra JM. Along the axis between type 1 and type 2 immunity; principles conserved in evolution from fish to mammals. Biology 2015;4:814-859. https://doi.org/10.3390/biology4040814.

Gieseck RL, Wilson MS, Wynn TA. Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol 2018;18:62-76. https://doi.org/10.1038/nri.2017.90.

Lotfi R, Lee JJ, Lotze MT. Eosinophilic granulocytes and damage-associated molecular pattern molecules (DAMPs): role in the inflammatory response within tumors. J Immunother 2007;30:16-28. https://doi.org/10.1097/01.cji.0000211324.53396.f6.

Elsas PX, Elsas MI. Eosinophilopoiesis at the cross-roads of research on development, immunity and drug discovery. Curr Med Chem 2007;14:1925-1939. https://doi.org/10.2174/092986707781368487.

Liu LY, Bates ME, Jarjour NN, Busse WW, Bertics PJ, Kelly EA. Generation of Th1 and Th2 chemokines by human eosinophils: evidence for a critical role of TNF-alpha. J Immunol 2007;179:4840-4848. https://doi.org/10.4049/jimmunol.179.7.4840.

Butterfield JH, Ackerman SJ, Scott RE, Pierre RV, Gleich GJ. Evidence for secretion of human eosinophil granule major basic protein and Charcot-Leyden crystal protein during eosinophil maturation. Exp Hematol 1984;12:163-170.

Furuta GT, Nieuwenhuis EE, Karhausen J, Gleich G, Blumberg RS, Lee JJ, et al. Eosinophils alter colonic epithelial barrier function: role for major basic protein. Am J Physiol Gastrointest Liver Physiol 2005;289:G890-897. https://doi.org/10.1152/ajpgi.00015.2005.

Jung Y, Wen T, Mingler MK, Caldwell JM, Wang YH, Chaplin DD, et al. IL-1β in eosinophil-mediated small intestinal homeostasis and IgA production. Mucosal Immunol 2015;8:930-942. https://doi.org/10.1038/mi.2014.123.

Chu VT, Beller A, Rausch S, Strandmark J, Zänker M, Arbach O, et al. Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis. Immunity 2014;40:582-593. https://doi.org/10.1016/j.immuni.2014.02.014.

Sugawara R, Lee EJ, Jang MS, Jeun EJ, Hong CP, Kim JH, et al. Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist. J Exp Med 2016;213:555-567. https://doi.org/10.1084/jem.20141388.

Withers SB, Forman R, Meza-Perez S, Sorobetea D, Sitnik K, Hopwood T, et al. Eosinophils are key regulators of perivascular adipose tissue and vascular functionality. Sci Rep 2017;7:44571. https://doi.org/10.1038/srep44571.

Uderhardt S, Ackermann JA, Fillep T, Hammond VJ, Willeit J, Santer P, et al. Enzymatic lipid oxidation by eosinophils propagates coagulation, hemostasis, and thrombotic disease. J Exp Med 2017;214:2121-2138. https://doi.org/10.1084/jem.20161070.

Throsby M, Herbelin A, Pléau JM, Dardenne M. CD11c+ eosinophils in the murine thymus: developmental regulation and recruitment upon MHC class I-restricted thymocyte deletion. J Immunol 2000;165:1965-1975. https://doi.org/10.4049/jimmunol.165.4.1965.

Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF, et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 2015;519:242-246. https://doi.org/10.1038/nature14115.

Suárez-Zamorano N, Fabbiano S, Chevalier C, Stojanović O, Colin DJ, Stevanović A, et al. Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat Med 2015;21:1497-1501. https://doi.org/10.1038/nm.3994.

Gouon-Evans V, Rothenberg ME, Pollard JW. Postnatal mammary gland development requires macrophages and eosinophils. Development 2000;127:2269-2282. https://doi.org/10.1242/dev.127.11.2269.

Gouon-Evans V, Pollard JW. Eotaxin is required for eosinophil homing into the stroma of the pubertal and cycling uterus. Endocrinology 2001;142:4515-4521. https://doi.org/10.1210/endo.142.10.8459.

Yu C, Cantor AB, Yang H, Browne C, Wells RA, Fujiwara Y, et al. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J Exp Med 2002;195:1387-1395. https://doi.org/10.1084/jem.20020656.

Mesnil C, Raulier S, Paulissen G, Xiao X, Birrell MA, Pirottin D, et al. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J Clin Invest 2016;126:3279-3295. https://doi.org/10.1172/jci85664.

Zhu C, Weng QY, Zhou LR, Cao C, Li F, Wu YF, et al. Homeostatic and early-recruited CD101(-) eosinophils suppress endotoxin-induced acute lung injury. Eur Respir J 2020;56. https://doi.org/10.1183/13993003.02354-2019.

Jacobsen EA, Jackson DJ, Heffler E, Mathur SK, Bredenoord AJ, Pavord ID, et al. Eosinophil knockout humans: Uncovering the role of eosinophils through eosinophil-directed biological therapies. Annu Rev Immunol 2021;39:719-757. https://doi.org/10.1146/annurev-immunol-093019-125918.

Reichman H, Itan M, Rozenberg P, Yarmolovski T, Brazowski E, Varol C, et al. Activated eosinophils exert antitumorigenic activities in colorectal cancer. Cancer Immunol Res 2019;7:388-400. https://doi.org/10.1158/2326-6066.Cir-18-0494.

Hollande C, Boussier J, Ziai J, Nozawa T, Bondet V, Phung W, et al. Inhibition of the dipeptidyl peptidase DPP4 (CD26) reveals IL-33-dependent eosinophil-mediated control of tumor growth. Nat Immunol 2019;20:257-264. https://doi.org/10.1038/s41590-019-0321-5.

Fabre V, Beiting DP, Bliss SK, Gebreselassie NG, Gagliardo LF, Lee NA, et al. Eosinophil deficiency compromises parasite survival in chronic nematode infection. J Immunol 2009;182:1577-1583. https://doi.org/10.4049/jimmunol.182.3.1577.

Stein LH, Redding KM, Lee JJ, Nolan TJ, Schad GA, Lok JB, et al. Eosinophils utilize multiple chemokine receptors for chemotaxis to the parasitic nematode Strongyloides stercoralis. J Innate Immun 2009;1:618-630. https://doi.org/10.1159/000233235.

Puxeddu I, Berkman N, Nissim Ben Efraim AH, Davies DE, Ribatti D, Gleich GJ, et al. The role of eosinophil major basic protein in angiogenesis. Allergy 2009;64:368-374. https://doi.org/10.1111/j.1398-9995.2008.01822.x.

Heredia JE, Mukundan L, Chen FM, Mueller AA, Deo RC, Locksley RM, et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 2013;153:376-388. https://doi.org/10.1016/j.cell.2013.02.053.

Puxeddu I, Berkman N, Ribatti D, Bader R, Haitchi HM, Davies DE, et al. Osteopontin is expressed and functional in human eosinophils. Allergy 2010;65:168-174. https://doi.org/10.1111/j.1398-9995.2009.02148.x.

Percopo CM, Dyer KD, Ochkur SI, Luo JL, Fischer ER, Lee JJ, et al. Activated mouse eosinophils protect against lethal respiratory virus infection. Blood 2014;123:743-752. https://doi.org/10.1182/blood-2013-05-502443.

Samarasinghe AE, Melo RC, Duan S, LeMessurier KS, Liedmann S, Surman SL, et al. Eosinophils promote antiviral immunity in mice infected with influenza a virus. J Immunol 2017;198:3214-3226. https://doi.org/10.4049/jimmunol.1600787.

Wehling-Henricks M, Sokolow S, Lee JJ, Myung KH, Villalta SA, Tidball JG. Major basic protein-1 promotes fibrosis of dystrophic muscle and attenuates the cellular immune response in muscular dystrophy. Hum Mol Genet 2008;17:2280-2292. https://doi.org/10.1093/hmg/ddn129.

Padigel UM, Hess JA, Lee JJ, Lok JB, Nolan TJ, Schad GA, et al. Eosinophils act as antigen-presenting cells to induce immunity to Strongyloides stercoralis in mice. J Infect Dis 2007;196:1844-1851. https://doi.org/10.1086/522968.

Mattes J, Yang M, Mahalingam S, Kuehr J, Webb DC, Simson L, et al. Intrinsic defect in T cell production of interleukin (IL)-13 in the absence of both IL-5 and eotaxin precludes the development of eosinophilia and airways hyperreactivity in experimental asthma. J Exp Med 2002;195:1433-1444. https://doi.org/10.1084/jem.20020009.

Spencer LA, Szela CT, Perez SAC, Kirchhoffer CL, Neves JS, Radke AL, et al. Human eosinophils constitutively express multiple Th1, Th2, and immunoregulatory cytokines that are secreted rapidly and differentially. J Leukoc Biol 2009;85:117-123. https://doi.org/10.1189/jlb.0108058.

Odemuyiwa SO, Ghahary A, Li Y, Puttagunta L, Lee JE, Musat-Marcu S, et al. Cutting edge: human eosinophils regulate T cell subset selection through indoleamine 2,3-dioxygenase. J Immunol 2004;173:5909-5913. https://doi.org/10.4049/jimmunol.173.10.5909.

Wong DT, Bowen SM, Elovic A, Gallagher GT, Weller PF. Eosinophil ablation and tumor development. Oral Oncol 1999;35:496-501. https://doi.org/10.1016/s1368-8375(99)00023-8.

Simson L, Ellyard JI, Dent LA, Matthaei KI, Rothenberg ME, Foster PS, et al. Regulation of carcinogenesis by IL-5 and CCL11: a potential role for eosinophils in tumor immune surveillance. J Immunol 2007;178:4222-4229. https://doi.org/10.4049/jimmunol.178.7.4222.

Zaynagetdinov R, Sherrill TP, Gleaves LA, McLoed AG, Saxon JA, Habermann AC, et al. Interleukin-5 facilitates lung metastasis by modulating the immune microenvironment. Cancer Res 2015;75:1624-1634. https://doi.org/10.1158/0008-5472.Can-14-2379.

Carretero R, Sektioglu IM, Garbi N, Salgado OC, Beckhove P, Hämmerling GJ. Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8(+) T cells. Nat Immunol 2015;16:609-617. https://doi.org/10.1038/ni.3159.

Lee JJ, Protheroe CA, Luo H, Ochkur SI, Scott GD, Zellner KR, et al. Eosinophil-dependent skin innervation and itching following contact toxicant exposure in mice. J Allergy Clin Immunol 2015;135:477-487. https://doi.org/10.1016/j.jaci.2014.07.003.

Radonjic-Hoesli S, Brüggen MC, Feldmeyer L, Simon HU, Simon D. Eosinophils in skin diseases. Semin Immunopathol 2021;43:393-409. https://doi.org/10.1007/s00281-021-00868-7.

Huang L, Appleton JA. Eosinophils in helminth infection: Defenders and dupes. Trends Parasitol 2016;32:798-807. https://doi.org/10.1016/j.pt.2016.05.004.

Yasuda K, Kuroda E. Role of eosinophils in protective immunity against secondary nematode infections. Immunol Med 2019;42:148-155. https://doi.org/10.1080/25785826.2019.1697135.

Kuang FL. Approach to patients with eosinophilia. Med Clin North Am 2020;104:1-14. https://doi.org/10.1016/j.mcna.2019.08.005.

Blumenthal KG, Youngster I, Rabideau DJ, Parker RA, Manning KS, Walensky RP, et al. Peripheral blood eosinophilia and hypersensitivity reactions among patients receiving outpatient parenteral antibiotics. J Allergy Clin Immunol 2015;136:1288-1294. https://doi.org/10.1016/j.jaci.2015.04.005.

Klion AD. Eosinophilia: a pragmatic approach to diagnosis and treatment. Hematology Am Soc Hematol Educ Program 2015;2015:92-97. https://doi.org/10.1182/asheducation-2015.1.92.

Doherty TA, Baum R, Newbury RO, Yang T, Dohil R, Aquino M, et al. Group 2 innate lymphocytes (ILC2) are enriched in active eosinophilic esophagitis. J Allergy Clin Immunol 2015;136:792-794. https://doi.org/10.1016/j.jaci.2015.05.048.

Mishra A, Rothenberg ME. Intratracheal IL-13 induces eosinophilic esophagitis by an IL-5, eotaxin-1, and STAT6-dependent mechanism. Gastroenterology 2003;125:1419-1427. https://doi.org/10.1016/j.gastro.2003.07.007.

Youngblood BA, Brock EC, Leung J, Falahati R, Bochner BS, Rasmussen HS, et al. Siglec-8 antibody reduces eosinophils and mast cells in a transgenic mouse model of eosinophilic gastroenteritis. JCI Insight 2019;4:e126219. https://doi.org/10.1172/jci.insight.126219.

Yan B, Yang J, Xie Y, Tang X. Relationship between blood eosinophil levels and COVID-19 mortality. World Allergy Organ J 2021;14:100521. https://doi.org/10.1016/j.waojou.2021.100521.

Jia Y, Yu H, Fernandes SM, Wei Y, Gonzalez-Gil A, Motari MG, et al. Expression of ligands for Siglec-8 and Siglec-9 in human airways and airway cells. J Allergy Clin Immunol 2015;135:799-810. https://doi.org/10.1016/j.jaci.2015.01.004.

Rank MA, Ochkur SI, Lewis JC, Teaford HG, 3rd, Wesselius LJ, Helmers RA, et al. Nasal and pharyngeal eosinophil peroxidase levels in adults with poorly controlled asthma correlate with sputum eosinophilia. Allergy 2016;71:567-570. https://doi.org/10.1111/all.12817.

Lee JJ, Jacobsen EA, McGarry MP, Schleimer RP, Lee NA. Eosinophils in health and disease: the LIAR hypothesis. Clin Exp Allergy 2010;40:563-575. https://doi.org/10.1111/j.1365-2222.2010.03484.x.

Shen HH, Ochkur SI, McGarry MP, Crosby JR, Hines EM, Borchers MT, et al. A causative relationship exists between eosinophils and the development of allergic pulmonary pathologies in the mouse. J Immunol 2003;170:3296-3305. https://doi.org/10.4049/jimmunol.170.6.3296.

Jacobsen EA, Ochkur SI, Doyle AD, LeSuer WE, Li W, Protheroe CA, et al. Lung pathologies in a chronic inflammation mouse model are independent of eosinophil degranulation. Am J Respir Crit Care Med 2017;195:1321-1332. https://doi.org/10.1164/rccm.201606-1129OC.

Doyle AD, Mukherjee M, LeSuer WE, Bittner TB, Pasha SM, Frere JJ, et al. Eosinophil-derived IL-13 promotes emphysema. Eur Respir J 2019;53:1801291. https://doi.org/10.1183/13993003.01291-2018.

Bou-Ghanem EN. mSphere of influence: Adenosine in host defense against bacterial pneumonia-friend or foe? mSphere 2019;4:e00326-00319. https://doi.org/10.1128/mSphere.00326-19.

Jacobsen EA, LeSuer WE, Nazaroff CD, Ochkur SI, Doyle AD, Wright BL, et al. Eosinophils induce recruitment and activation of ILC2s. J Allergy Clin Immunol Pract 2019;143:AB289. https://doi.org/10.1016/j.jaci.2018.12.885.

Kuang FL, Bochner BS. Lessons learned from targeting eosinophils in human disease. Semin Immunopathol 2021;43:459-475. https://doi.org/10.1007/s00281-021-00849-w.

Akdis CA, Arkwright PD, Brüggen MC, Busse W, Gadina M, Guttman-Yassky E, et al. Type 2 immunity in the skin and lungs. Allergy 2020;75:1582-1605. https://doi.org/10.1111/all.14318.

Moran AM, Ramakrishnan S, Borg CA, Connolly CM, Couillard S, Mwasuku CM, et al. Blood eosinophil depletion with mepolizumab, benralizumab, and prednisolone in eosinophilic asthma. Am J Respir Crit Care Med 2020;202:1314-1316. https://doi.org/10.1164/rccm.202003-0729LE.

Nair P, Wenzel S, Rabe KF, Bourdin A, Lugogo NL, Kuna P, et al. Oral glucocorticoid-sparing effect of benralizumab in severe asthma. N Engl J Med 2017;376:2448-2458. https://doi.org/10.1056/NEJMoa1703501.

Bleecker ER, FitzGerald JM, Chanez P, Papi A, Weinstein SF, Barker P, et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β(2)-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet 2016;388:2115-2127. https://doi.org/10.1016/s0140-6736(16)31324-1.

Busse WW, Bleecker ER, FitzGerald JM, Ferguson GT, Barker P, Sproule S, et al. Long-term safety and efficacy of benralizumab in patients with severe, uncontrolled asthma: 1-year results from the BORA phase 3 extension trial. Lancet Respir Med 2019;7:46-59. https://doi.org/10.1016/s2213-2600(18)30406-5.

Jackson DJ, Korn S, Mathur SK, Barker P, Meka VG, Martin UJ, et al. Safety of eosinophil-depleting therapy for severe, eosinophilic asthma: Focus on benralizumab. Drug Saf 2020;43:409-425. https://doi.org/10.1007/s40264-020-00926-3.

Har D, Bird JA. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): A randomised, multicentre, placebo-controlled phase 3 trial. Pediatrics 2017;140:S224-S225. https://doi.org/10.1542/peds.2017-2475LLLL.

FitzGerald JM, Bleecker ER, Nair P, Korn S, Ohta K, Lommatzsch M, et al. Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2016;388:2128-2141. https://doi.org/10.1016/s0140-6736(16)31322-8.

Khatri S, Moore W, Gibson PG, Leigh R, Bourdin A, Maspero J, et al. Assessment of the long-term safety of mepolizumab and durability of clinical response in patients with severe eosinophilic asthma. J Allergy Clin Immunol 2019;143:1742-1751. https://doi.org/10.1016/j.jaci.2018.09.033.

Cómo citar
1.
Gil GM, Cardona R. Depleción de eosinófilos: muchas implicaciones en modelos múridos, pocas estudiadas en humanos. Med. Lab. [Internet]. 4 de abril de 2022 [citado 23 de mayo de 2022];26(2):141-57. Disponible en: https://medicinaylaboratorio.com/index.php/myl/article/view/573
Publicado
2022-04-04
Sección
Artículos de revisión
Crossref Cited-by logo