Asociación de los niveles de adiponectina y del factor de necrosis tumoral-alfa (TNF-α) con la albuminuria en pacientes con diabetes mellitus tipo 2

  • Jhoalmis Sierra-Castrillo Universidad de Santander
  • Lyz J. Gómez-Rave Colegio Mayor de Antioquia
Palabras clave: diabetes mellitus, factor de necrosis tumoral alfa, adiponectina, albuminuria, enfermedades renales.

Resumen

Introducción: la diabetes mellitus tipo 2 es una enfermedad metabólica crónica que de no ser controlada puede generar progresivamente daño renal hasta causar nefropatía diabética. Además, está altamente asociada con un estado inflamatorio permanente relacionado con la secreción de adipocitoquinas (IL-6, TNF-α, leptina, adiponectina) que participan en la homeostasis del metabolismo y son determinantes en la regulación del proceso aterogénico y la resistencia a la insulina. Objetivo: relacionar el comportamiento de los niveles de adiponectina y TNF-α con la albuminuria en pacientes con diabetes mellitus tipo 2. Materiales y métodos: la investigación se basó en un modelo descriptivo de corte transversal con una población de estudio conformada por pacientes que ingresaron al Hospital Universitario Erasmo Meoz (Cúcuta, Colombia). De acuerdo con los criterios de selección establecidos se conformaron dos grupos de análisis: pacientes con diagnóstico de diabetes mellitus tipo 2 y albuminuria >30 mg/L (n = 24) e individuos control sin las condiciones anteriores (n = 20). Resultados: los resultados revelaron que existe una correlación positiva y estadísticamente significativa entre los valores de la concentración de TNF-α y albuminuria (p < 0,03). Entre los niveles de adiponectina y de TNF-α aparentemente no existe ningún tipo de correlación (p > 0,05). Conclusiones: aunque no existen diferencias significativas entre los niveles de adiponectina y de TNF-α, el TNF-α podría ser explotado como un marcador temprano de daño renal o servir para el diseño de estimadores de la progresión de la lesión en los pacientes con diabetes mellitus tipo 2.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Jhoalmis Sierra-Castrillo, Universidad de Santander

Bacterióloga y Laboratorista Clínica, MSc en Bioquímica Clínica. Docente de Investigación, Grupo Biogen, programa de Bacteriología, Universidad de Santander. Cúcuta, Colombia. 

Lyz J. Gómez-Rave, Colegio Mayor de Antioquia

Química Farmacéutica, MSc en Bioquímica Clínica. Investigadora Grupo Biociencias, Facultad de Ciencias de la Salud, Colegio Mayor de Antioquia. Medellín, Colombia.

Referencias bibliográficas

Goncalves Reis CE, Dullius J. Glycemic acute changes in type 2 diabetics caused by low and high glycemic index diets. Nutr Hosp 2011; 26: 546-552.

Khardori R. Type 2 Diabetes Mellitus Clinical Presentation. 2017. Medscape. Disponible: http://emedicine.medscape.com/article/117853-clinical. Consultado: jun 2017.

Torres-Viloria A, Zacarías-Castillo R. Nefropatía diabética. Rev Hosp Gral Dr M Gea González 2002; 5: 24-32.

Kashihara N, Haruna Y, Kondeti VK, Kanwar YS. Oxidative stress in diabetic nephropathy. Curr Med Chem 2010; 17: 4256-4269.

https://doi.org/10.2174/092986710793348581

Riemer J, Bulleid N, Herrmann JM. Disulfide formation in the ER and mitochondria: two solutions to a common process. Science 2009; 324: 1284-1287.

https://doi.org/10.1126/science.1170653

Battilana CA. El riñón en la hipertensión arterial esencial. Rev Perú Cardiol 1997; XXIII: 26-31.

Glassock RJ. Is the presence of microalbuminuria a relevant marker of kidney disease? Curr Hypertens Rep 2010; 12: 364-368.

https://doi.org/10.1007/s11906-010-0133-3

Tagle R, González F, Acevedo M. Microalbuminuria y excreción urinaria de albúmina en la práctica clínica. Rev Méd Chile 2012; 140: 797-805.

https://doi.org/10.4067/S0034-98872012000600016

King GL. The role of inflammatory cytokines in diabetes and its complications. J Periodontol 2008; 79: 1527-1534.

https://doi.org/10.1902/jop.2008.080246

Navarro-González JF, Mora-Fernandez C. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol 2008; 19: 433-442.

https://doi.org/10.1681/ASN.2007091048

Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003; 3: 23-35.

https://doi.org/10.1038/nri978

Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007; 117: 175-184.

https://doi.org/10.1172/JCI29881

Cao H. Adipocytokines in obesity and metabolic disease. J Endocrinol 2014; 220: T47-59.

https://doi.org/10.1530/JOE-13-0339

Ye J, McGuinness OP. Inflammation during obesity is not all bad: evidence from animal and human studies. Am J Physiol Endocrinol Metab 2013; 304: E466-477.

https://doi.org/10.1152/ajpendo.00266.2012

Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 2008; 135: 61-73.

https://doi.org/10.1016/j.cell.2008.07.043

Sharma A, Bartell SM, Baile CA, Chen B, Podolsky RH, McIndoe RA, et al. Hepatic gene expression profiling reveals key pathways involved in leptin-mediated weight loss in ob/ob mice. PLoS One 2010; 5: e12147.

https://doi.org/10.1371/journal.pone.0012147

Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med 2007; 13: 332-339.

https://doi.org/10.1038/nm1557

Takemura Y, Ouchi N, Shibata R, Aprahamian T, Kirber MT, Summer RS, et al. Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies. J Clin Invest 2007; 117: 375-386.

https://doi.org/10.1172/JCI29709

Okamoto Y, Kihara S, Ouchi N, Nishida M, Arita Y, Kumada M, et al. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 2002; 106: 2767-2770.

https://doi.org/10.1161/01.CIR.0000042707.50032.19

Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 1999; 100: 2473-2476.

https://doi.org/10.1161/01.CIR.100.25.2473

Kobayashi H, Ouchi N, Kihara S, Walsh K, Kumada M, Abe Y, et al. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ Res 2004; 94: e27-31.

https://doi.org/10.1161/01.RES.0000119921.86460.37

Nguyen MT, Satoh H, Favelyukis S, Babendure JL, Imamura T, Sbodio JI, et al. JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J Biol Chem 2005; 280: 35361-35371.

https://doi.org/10.1074/jbc.M504611200

Wang S, Soni KG, Semache M, Casavant S, Fortier M, Pan L, et al. Lipolysis and the integrated physiology of lipid energy metabolism. Mol Genet Metab 2008; 95: 117-126.

https://doi.org/10.1016/j.ymgme.2008.06.012

Kim JH, Bachmann RA, Chen J. Interleukin-6 and insulin resistance. Vitam Horm 2009; 80: 613-633.

https://doi.org/10.1016/S0083-6729(08)00621-3

Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 2008; 358: 580-591.

https://doi.org/10.1056/NEJMoa0706245

Lin J, Hu FB, Curhan G. Serum adiponectin and renal dysfunction in men with type 2 diabetes. Diabetes Care 2007; 30: 239-244.

https://doi.org/10.2337/dc06-1296

Parchwani DN, Upadhyah AA. Diabetic Nephropathy: Progression and Pathophysiology. Int J Med Sci Public Health 2012; 1: 59-70.

https://doi.org/10.5455/ijmsph.2012.1.59-70

Fernandez-Veledo S, Vila-Bedmar R, Nieto-Vazquez I, Lorenzo M. c-Jun N-terminal kinase 1/2 activation by tumor necrosis factor-alpha induces insulin resistance in human visceral but not subcutaneous adipocytes: reversal by liver X receptor agonists. J Clin Endocrinol Metab 2009; 94: 3583-3593.

https://doi.org/10.1210/jc.2009-0558

Gupta D, Varma S, Khandelwal RL. Long-term effects of tumor necrosis factor-alpha treatment on insulin signaling pathway in HepG2 cells and HepG2 cells overexpressing constitutively active Akt/PKB. J Cell Biochem 2007; 100: 593-607.

https://doi.org/10.1002/jcb.21080

Weil EJ, Lemley KV, Mason CC, Yee B, Jones LI, Blouch K, et al. Podocyte detachment and reduced glomerular capillary endothelial fenestration promote kidney disease in type 2 diabetic nephropathy. Kidney Int 2012; 82: 1010-1017.

https://doi.org/10.1038/ki.2012.234

Berhane AM, Weil EJ, Knowler WC, Nelson RG, Hanson RL. Albuminuria and estimated glomerular filtration rate as predictors of diabetic end-stage renal disease and death. Clin J Am Soc Nephrol 2011; 6: 2444-2451.

https://doi.org/10.2215/CJN.00580111

Porrini E, Ruggenenti P, Mogensen CE, Barlovic DP, Praga M, Cruzado JM, et al. Non-proteinuric pathways in loss of renal function in patients with type 2 diabetes. Lancet Diabetes Endocrinol 2015; 3: 382-391.

https://doi.org/10.1016/S2213-8587(15)00094-7

U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, National Heart Lung and Blood Institute, National Cholesterol Education Program. ATP III Guidelines At-A-Glance Quick Desk Reference. 2001. Disponible: https://www.nhlbi.nih.gov/files/docs/guidelines/atglance.pdf. Consultado: jun 2017.

Sheen YJ, Sheu WH. Risks of rapid decline renal function in patients with type 2 diabetes. World J Diabetes 2014; 5: 835-846.

https://doi.org/10.4239/wjd.v5.i6.835

Nogueira Cortez D, Afonso Reis I, Silva Souza DA, Lopes Macedo MM, de Carvalho Torres H. Complications and the time of diagnosis of diabetes mellitus in primary care. Acta Paul Enferm 2015; 28: 250-255.

https://doi.org/10.1590/1982-0194201500042

Yano Y, Hoshide S, Ishikawa J, Hashimoto T, Eguchi K, Shimada K, et al. Differential impacts of adiponectin on low-grade albuminuria between obese and nonobese persons without diabetes. J Clin Hypertens (Greenwich) 2007; 9: 775-782.

https://doi.org/10.1111/j.1524-6175.2007.07321.x

Kato K, Osawa H, Ochi M, Kusunoki Y, Ebisui O, Ohno K, et al. Serum total and high molecular weight adiponectin levels are correlated with the severity of diabetic retinopathy and nephropathy. Clin Endocrinol (Oxf) 2008; 68: 442-449.

von Eynatten M, Liu D, Hock C, Oikonomou D, Baumann M, Allolio B, et al. Urinary adiponectin excretion: a novel marker for vascular damage in type 2 diabetes. Diabetes 2009; 58: 2093-2099.

https://doi.org/10.2337/db09-0204

Christou GA, Kiortsis DN. The role of adiponectin in renal physiology and development of albuminuria. J Endocrinol 2014; 221: R49-61.

https://doi.org/10.1530/JOE-13-0578

Sweiss N, Sharma K. Adiponectin effects on the kidney. Best Pract Res Clin Endocrinol Metab 2014; 28: 71-79.

https://doi.org/10.1016/j.beem.2013.08.002

Aleidi S, Issa A, Bustanji H, Khalil M, Bustanji Y. Adiponectin serum levels correlate with insulin resistance in type 2 diabetic patients. Saudi Pharm J 2015; 23: 250-256.

https://doi.org/10.1016/j.jsps.2014.11.011

Adamczak M, Rzepka E, Chudek J, Wiecek A. Ageing and plasma adiponectin concentration in apparently healthy males and females. Clin Endocrinol (Oxf) 2005; 62: 114-118.

https://doi.org/10.1111/j.1365-2265.2004.02182.x

Tzanavari T, Giannogonas P, Karalis KP. TNF-alpha and obesity. Curr Dir Autoimmun 2010; 11: 145-156.

https://doi.org/10.1159/000289203

Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 2004; 25: 4-7.

https://doi.org/10.1016/j.it.2003.10.013

Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. The Journal of Clinical Investigation 1995; 95: 2409-2415.

https://doi.org/10.1172/JCI117936

Vinay DS, Kwon BS. The tumour necrosis factor/TNF receptor superfamily: therapeutic targets in autoimmune diseases. Clin Exp Immunol 2011; 164: 145-157.

https://doi.org/10.1111/j.1365-2249.2011.04375.x

Nieto-Vazquez I, Fernandez-Veledo S, Kramer DK, Vila-Bedmar R, Garcia-Guerra L, Lorenzo M. Insulin resistance associated to obesity: the link TNF-alpha. Arch Physiol Biochem 2008; 114: 183-194.

https://doi.org/10.1080/13813450802181047

Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, Garcia-Perez J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 2011; 7: 327-340.

https://doi.org/10.1038/nrneph.2011.51

Navarro JF, Mora C, Gomez M, Muros M, Lopez-Aguilar C, Garcia J. Influence of renal involvement on peripheral blood mononuclear cell expression behaviour of tumour necrosis factor-alpha and interleukin-6 in type 2 diabetic patients. Nephrol Dial Transplant 2008; 23: 919-926.

https://doi.org/10.1093/ndt/gfm674

Omote K, Gohda T, Murakoshi M, Sasaki Y, Kazuno S, Fujimura T, et al. Role of the TNF pathway in the progression of diabetic nephropathy in KK-A(y) mice. Am J Physiol Renal Physiol 2014; 306: F1335-1347.

https://doi.org/10.1152/ajprenal.00509.2013

Wang Z, Wei M, Wang M, Chen L, Liu H, Ren Y, et al. Inhibition of macrophage migration inhibitory factor reduces diabetic nephropathy in type II diabetes mice. Inflammation 2014; 37: 2020-2029.

https://doi.org/10.1007/s10753-014-9934-x

Lampropoulou IT, Stangou M, Papagianni A, Didangelos T, Iliadis F, Efstratiadis G. TNF-alpha and microalbuminuria in patients with type 2 diabetes mellitus. J Diabetes Res 2014; 2014: 394206.

https://doi.org/10.1155/2014/394206

Chen YL, Qiao YC, Xu Y, Ling W, Pan YH, Huang YC, et al. Serum TNF-alpha concentrations in type 2 diabetes mellitus patients and diabetic nephropathy patients: A systematic review and meta-analysis. Immunol Lett 2017; 186: 52-58.

https://doi.org/10.1016/j.imlet.2017.04.003

Cómo citar
1.
Sierra-Castrillo J, Gómez-Rave LJ. Asociación de los niveles de adiponectina y del factor de necrosis tumoral-alfa (TNF-α) con la albuminuria en pacientes con diabetes mellitus tipo 2. Med. Lab. [Internet]. 1 de mayo de 2017 [citado 22 de abril de 2021];23(5-6):257-70. Disponible en: https://medicinaylaboratorio.com/index.php/myl/article/view/43
Publicado
2017-05-01
Sección
Artículos originales
Crossref Cited-by logo