Estrategias alternativas para el diagnóstico de tuberculosis: una opción para los pacientes paucibacilares

  • Sergio F. Mosquera-Restrepo PhD Fundación Universitaria Autónoma de las Américas
  • Marta C. Mesa-Villanueva PhD Pontificia Universidad Javeriana
  • Mauricio Rojas-López PhD Universidad de Antioquia
Palabras clave: tuberculosis, lípidos, lipoarabinomanano, dimicolato de trehalosa, cromatografía.

Resumen

El diagnóstico de la tuberculosis ha estado basado en la detección directa de la micobacteria; sin embargo, se estima que este se puede lograr solamente en el 10% de los casos y requiere que se combine con métodos confirmatorios como el cultivo, el cual puede tomar varias semanas para que el crecimiento sea evidente. Los métodos basados en la amplificación de la secuencia ácidos nucleicos muestran sensibilidad y especificidad altas, pero no siempre son accesibles a todos los laboratorios debido a sus requerimientos de infraestructura y el costo de los insumos. Las limitaciones para el diagnóstico hacen que se busque continuamente metabolitos micobacterianos, mediante diferentes aproximaciones, que sean, ulteriormente, fáciles de rastrear en condiciones muy básicas de laboratorio. En esta revisión se incluyen algunas de las aproximaciones metodológicas basadas en la detección de derivados micobacterianos y su valor como herramienta para el rastreo de la micobacteria.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Sergio F. Mosquera-Restrepo PhD, Fundación Universitaria Autónoma de las Américas

Bacteriólogo, MSc y PhD en Ciencias Básicas Biomédicas. Docente, Facultad de Medicina Veterinaria y Zootecnia ,Fundación Universitaria Autónoma de las Américas. Medellín, Colombia.

Marta C. Mesa-Villanueva PhD, Pontificia Universidad Javeriana

Bacterióloga, MSc en Microbiología, PhD en Ciencias Biológicas. Exprofesora del Departamento de Microbiología,Pontificia Universidad Javeriana. Bogotá, Colombia

Mauricio Rojas-López PhD, Universidad de Antioquia

Biólogo, MSc en Inmunología, PhD en Ciencias (Inmunología). Profesor e investigador, Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Universidad de Antioquia. Coordinador Unidad de Citometría de Flujo, Sede de Investigación Universitaria, Universidad de Antioquia. Medellín, Colombia. Correspondencia: Calle 70 N.o 52-21.

Referencias bibliográficas

World Health Organization. Global tuberculosis report 2017. Ginebra, Suiza: World Health Organization; 2017.

World Health Organization. Tuberculosis data: Tuberculosis country profiles: Financing for TB prevention, diag- nosis and treatment: Colombia. 2017. Disponible: http:// www.who.int/tb/country/data. Consultado: dic 2017.

Brodie D, Schluger NW. The diagnosis of tuberculosis. Clin Chest Med 2005; 26: 247-271, vi.

https://doi.org/10.1016/j.ccm.2005.02.012

Druszczynska M, Kowalewicz-Kulbat M, Fol M, Wlodarczyk M, Rudnicka W. Latent M. tuberculosis in- 19. fection--pathogenesis, diagnosis, treatment and prevention strategies. Pol J Microbiol 2012; 61: 3-10.

Wilkinson RJ, Zhu X, Wilkinson KA, Lalvani A, Ivanyi J, Pasvol G, et al. 38 000 MW antigen-specific major histo- compatibility complex class I restricted interferon-gam- 20. ma-secreting CD8+ T cells in healthy contacts of tuberculosis. Immunology 1998; 95: 585-590.

https://doi.org/10.1046/j.1365-2567.1998.00648.x

Borgstrom E, Andersen P, Atterfelt F, Julander I, Kallenius G, Maeurer M, et al. Immune responses to ESAT-6 and CFP-10 by FASCIA and multiplex technology for di- 21. agnosis of M. tuberculosis infection; IP-10 is a promising marker. PLoS One 2012; 7: e43438.

https://doi.org/10.1371/journal.pone.0043438

Koul A, Vranckx L, Dhar N, Gohlmann HW, Ozdemir E, Neefs JM, et al. Delayed bactericidal response of Myco- 22. bacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism. Nat Commun 2014; 5: 3369.

https://doi.org/10.1038/ncomms4369

Vlachaki E, Psathakis K, Tsintiris K, Iliopoulos A. Delayed response to anti-tuberculosis treatment in a patient on 23. infliximab. Respir Med 2005; 99: 648-652.

https://doi.org/10.1016/j.rmed.2004.10.006

Escobar AL, Coimbra CE, Jr., Camacho LA, Santos RV. Tu- berculin reactivity and tuberculosis epidemiology in the Pakaanova (Wari') Indians of Rondonia, south-western Brazilian Amazon. Int J Tuberc Lung Dis 2004; 8: 45-51.

Sellam J, Hamdi H, Roy C, Baron G, Lemann M, Puechal X, et al. Comparison of in vitro-specific blood tests with tuberculin skin test for diagnosis of latent tuberculosis 25. before anti-TNF therapy. Ann Rheum Dis 2007; 66: 1610-1615

https://doi.org/10.1136/ard.2007.069799

Reider RB, Farber SM. Changing Patterns in Chest Disease: A Perspective of Two Decades. Dis Chest 1963; 44: 573-586.

https://doi.org/10.1378/chest.44.6.573

Lalvani A, Hill AV. Cytotoxic T-lymphocytes against ma- laria and tuberculosis: from natural immunity to vaccine design. Clin Sci (Lond) 1998; 95: 531-538.

https://doi.org/10.1042/cs0950531

von Reyn CF, Williams DE, Horsburgh CR, Jr., Jaeger AS, Marsh BJ, Haslov K, et al. Dual skin testing with Myco- bacterium avium sensitin and purified protein deriva- tive to discriminate pulmonary disease due to M. avium complex from pulmonary disease due to Mycobacterium tuberculosis. J Infect Dis 1998; 177: 730-736.

https://doi.org/10.1086/514225

Black GF, Weir RE, Floyd S, Bliss L, Warndorff DK, Crampin AC, et al. BCG-induced increase in interferon-gamma response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the UK: two randomised controlled studies. Lancet 2002; 359: 1393-1401.

https://doi.org/10.1016/S0140-6736(02)08353-8

Kwamanga DO, Swai OB, Agwanda R, Githui W. Effect of non-tuberculous Mycobacteria infection on tuberculin results among primary school children in Kenya. East Afr Med J 1995; 72: 222-227.

American Thoracic Society, Centers for Disease Control and Prevention. Diagnostic Standards and Classification of Tuberculosis in Adults and Children. Am J Respir Crit Care Med 2000; 161: 19.

https://doi.org/10.1164/ajrccm.161.4.16141

Dinnes J, Deeks J, Kunst H, Gibson A, Cummins E, Waugh N, et al. A systematic review of rapid diagnostic tests for the detection of tuberculosis infection. Health Technol Assess 2007; 11: 1-196.

https://doi.org/10.3310/hta11030

Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 1996; 178: 1274-1282.

https://doi.org/10.1128/jb.178.5.1274-1282.1996

Philipp WJ, Nair S, Guglielmi G, Lagranderie M, Gicquel B, Cole ST. Physical mapping of Mycobacterium bovis BCG pasteur reveals differences from the genome map of Mycobacterium tuberculosis H37Rv and from M. bovis. Microbiology 1996; 142 ( Pt 11): 3135-3145.

https://doi.org/10.1099/13500872-142-11-3135

Hsu T, Hingley-Wilson SM, Chen B, Chen M, Dai AZ, Morin PM, et al. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci U S A 2003; 100: 12420-12425.

https://doi.org/10.1073/pnas.1635213100

Ganguly N, Siddiqui I, Sharma P. Role of M. tuberculosis RD-1 region encoded secretory proteins in protective response and virulence. Tuberculosis (Edinb) 2008; 88: 510-517.

https://doi.org/10.1016/j.tube.2008.05.002

Tan T, Lee WL, Alexander DC, Grinstein S, Liu J. The ESAT- 6/CFP-10 secretion system of Mycobacterium marinum modulates phagosome maturation. Cell Microbiol 2006; 8: 1417-1429.

https://doi.org/10.1111/j.1462-5822.2006.00721.x

Qiao D, Yang BY, Li L, Ma JJ, Zhang XL, Lao SH, et al. ESAT-6- and CFP-10-specific Th1, Th22 and Th17 cells in tuberculous pleurisy may contribute to the local immune response against Mycobacterium tuberculosis infection. Scand J Immunol 2011; 73: 330-337.

https://doi.org/10.1111/j.1365-3083.2011.02512.x

Meher AK, Lella RK, Sharma C, Arora A. Analysis of complex formation and immune response of CFP-10 and ESAT-6 mutants. Vaccine 2007; 25: 6098-6106.

https://doi.org/10.1016/j.vaccine.2007.05.016

Arend SM, Engelhard AC, Groot G, de Boer K, Andersen P, Ottenhoff TH, et al. Tuberculin skin testing compared with T-cell responses to Mycobacterium tuberculosis-specific and nonspecific antigens for detection of latent infection in persons with recent tuberculosis con- tact. Clin Diagn Lab Immunol 2001; 8: 1089-1096.

https://doi.org/10.1128/CDLI.8.6.1089-1096.2001

Johnson PD, Stuart RL, Grayson ML, Olden D, Clancy A, Ravn P, et al. Tuberculin-purified protein derivative-, MPT-64-, and ESAT-6-stimulated gamma interferon re- sponses in medical students before and after Mycobac- terium bovis BCG vaccination and in patients with tuber- culosis. Clin Diagn Lab Immunol 1999; 6: 934-937.

Brock I, Munk ME, Kok-Jensen A, Andersen P. Perfor- mance of whole blood IFN-gamma test for tuberculosis diagnosis based on PPD or the specific antigens ESAT-6 and CFP-10. Int J Tuberc Lung Dis 2001; 5: 462-467.

Barnes PF. Diagnosing latent tuberculosis infection - Turning glitter to gold. Am J Respir Crit Care Med 2004; 170: 5-6.

https://doi.org/10.1164/rccm.2404004

Battaglioli T, Rintiswati N, Martin A, Palupi KR, Bern- aerts G, Dwihardiani B, et al. Comparative performance of Thin Layer Agar and Lowenstein-Jensen culture for diagnosis of tuberculosis. Clin Microbiol Infect 2013; 19: E502-508.

https://doi.org/10.1111/1469-0691.12265

Pathan AA, Wilkinson KA, Klenerman P, McShane H, Davidson RN, Pasvol G, et al. Direct ex vivo analysis of antigen-specific IFN-gamma-secreting CD4 T cells in My- cobacterium tuberculosis-infected individuals: associa- tions with clinical disease state and effect of treatment. J Immunol 2001; 167: 5217-5225.

https://doi.org/10.4049/jimmunol.167.9.5217

Bishop PJ, Neumann G. The history of the Ziehl-Neelsen stain. Tubercle 1970; 51: 196-206.

https://doi.org/10.1016/0041-3879(70)90073-5

Mathew P, Kuo YH, Vazirani B, Eng RH, Weinstein MP. Are three sputum acid-fast bacillus smears necessary for discontinuing tuberculosis isolation? J Clin Microbiol 2002; 40: 3482-3484.

Hensler NM, Spivey CG, Jr., Dees TM. The use of hyper- tonic aerosol in production of sputum for diagnosis of tuberculosis. Comparison with gastric specimens. Dis Chest 1961; 40: 639-642.

https://doi.org/10.1378/chest.40.6.639

Davies PD, Pai M. The diagnosis and misdiagnosis of tu- berculosis. Int J Tuberc Lung Dis 2008; 12: 1226-1234.

Dalovisio JR, Montenegro-James S, Kemmerly SA, Genre CF, Chambers R, Greer D, et al. Comparison of the amplified Mycobacterium tuberculosis (MTB) direct test, Amplicor MTB PCR, and IS6110-PCR for detection of MTB in respiratory specimens. Clin Infect Dis 1996; 23: 1099- 1106; discussion 1107-1098.

https://doi.org/10.1093/clinids/23.5.1099

Bergmann JS, Yuoh G, Fish G, Woods GL. Clinical eval- uation of the enhanced Gen-Probe Amplified Mycobac- terium Tuberculosis Direct Test for rapid diagnosis of tuberculosis in prison inmates. J Clin Microbiol 1999; 37: 1419-1425.

Johansen IS, Thomsen VO, Johansen A, Andersen P, Lundgren B. Evaluation of a new commercial assay for diagnosis of pulmonary and nonpulmonary tuberculosis. Eur J Clin Microbiol Infect Dis 2002; 21: 455-460.

https://doi.org/10.1007/s10096-002-0737-x

Mederos LM, Quinones Y, Ruiz A, Teja I, Valdivia JA. [A chromatographic analysis of the Mycobacterium tuber- culosis strains isolated from an outbreak in HIV patients in Cuba]. Rev Cubana Med Trop 1998; 50: 120-123.

Steingart KR, Flores LL, Dendukuri N, Schiller I, Laal S, Ramsay A, et al. Commercial serological tests for the di- agnosis of active pulmonary and extrapulmonary tuber- culosis: an updated systematic review and meta-analysis. PLoS Med 2011; 8: e1001062.

https://doi.org/10.1371/journal.pmed.1001062

Flores LL, Steingart KR, Dendukuri N, Schiller I, Minion J, Pai M, et al. Systematic review and meta-analysis of antigen detection tests for the diagnosis of tuberculosis. Clin Vaccine Immunol 2011; 18: 1616-1627.

https://doi.org/10.1128/CVI.05205-11

Ling DI, Flores LL, Riley LW, Pai M. Commercial nucle- ic-acid amplification tests for diagnosis of pulmonary tuberculosis in respiratory specimens: meta-analysis and meta-regression. PLoS One 2008; 3: e1536.

https://doi.org/10.1371/journal.pone.0001536

Flores LL, Pai M, Colford JM, Jr., Riley LW. In-house nu- cleic acid amplification tests for the detection of Myco- bacterium tuberculosis in sputum specimens: meta-anal- ysis and meta-regression. BMC Microbiol 2005; 5: 55.

https://doi.org/10.1186/1471-2180-5-55

Morgan M, Kalantri S, Flores L, Pai M. A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. BMC Infect Dis 2005; 5: 62.

https://doi.org/10.1186/1471-2334-5-62

Abdelhaleem AA, Hershan AA, Agarwal PK. Diagnostic Accuracy of IS6110 Insertion Gene, Hsp65, and Xpert MTB/RIF for Rapid Diagnosis of Pulmonary Tuberculosis. JTR 2017; 5: 1-12

https://doi.org/10.4236/jtr.2017.51001

Nelson LJ, Wells CD. Global epidemiology of childhood tuberculosis. Int J Tuberc Lung Dis 2004; 8: 636-647.

Nelson LJ, Schneider E, Wells CD, Moore M. Epidemiol- ogy of childhood tuberculosis in the United States, 1993- 2001: the need for continued vigilance. Pediatrics 2004; 114: 333-341.

https://doi.org/10.1542/peds.114.2.333

Lopez Avalos GG, Prado Montes de Oca E. Classic and new diagnostic approaches to childhood tuberculosis. J Trop Med 2012; 2012: 818219.

https://doi.org/10.1155/2012/818219

World Health Organization. International standards for tuberculosis care. Wkly Epidemiol Rec 2006; 81: 43-47.

Hopewell PC, Fair EL, Uplekar M. Updating the Interna- tional Standards for Tuberculosis Care. Entering the era of molecular diagnostics. Ann Am Thorac Soc 2014; 11: 277-285.

https://doi.org/10.1513/AnnalsATS.201401-004AR

Lewinsohn DA, Gennaro ML, Scholvinck L, Lewinsohn DM. Tuberculosis immunology in children: diagnostic and therapeutic challenges and opportunities. Int J Tu- berc Lung Dis 2004; 8: 658-674.

Newton SM, Brent AJ, Anderson S, Whittaker E, Kamp- mann B. Paediatric tuberculosis. Lancet Infect Dis 2008; 8: 498-510.

https://doi.org/10.1016/S1473-3099(08)70182-8

Marais BJ, Gie RP, Hesseling AC, Schaaf HS, Lombard C, Enarson DA, et al. A refined symptom-based approach to diagnose pulmonary tuberculosis in children. Pediatrics 2006; 118: e1350-1359.

https://doi.org/10.1542/peds.2006-0519

Imaz MS, Comini MA, Zerbini E, Sequeira MD, Spoletti MJ, Etchart AA, et al. Evaluation of the diagnostic value of measuring IgG, IgM and IgA antibodies to the recombi- nant 16-kilodalton antigen of mycobacterium tuberculo- sis in childhood tuberculosis. Int J Tuberc Lung Dis 2001; 5: 1036-1043.

Nicol MP, Pienaar D, Wood K, Eley B, Wilkinson RJ, Henderson H, et al. Enzyme-linked immunospot assay responses to early secretory antigenic target 6, culture filtrate protein 10, and purified protein derivative among children with tuberculosis: implications for diagnosis and monitoring of therapy. Clin Infect Dis 2005; 40: 1301- 1308.

https://doi.org/10.1086/429245

Hesseling AC, Gie RP. Scoring systems for the diagnosis of childhood tuberculosis: are we making progress? Int J Tuberc Lung Dis 2007; 11: 245.

Gomez-Pastrana D, Torronteras R, Caro P, Anguita ML, Lopez-Barrio AM, Andres A, et al. Comparison of am- plicor, in-house polymerase chain reaction, and conven- tional culture for the diagnosis of tuberculosis in chil- dren. Clin Infect Dis 2001; 32: 17-22.

https://doi.org/10.1086/317526

Khan EA, Starke JR. Diagnosis of tuberculosis in children: increased need for better methods. Emerg Infect Dis 1995; 1: 115-123.

https://doi.org/10.3201/eid0104.950402

World Health Organization. Guidance for national tuber- culosis programmes on the management of tuberculosis in children (ed 2a). Ginebra, Suiza: WHO Press; 2014.

Zumla A, Schaaf HS. Tuberculosis. Preface. Clin Chest Med 2009; 30: xiii-xviii.

https://doi.org/10.1016/j.ccm.2009.08.020

Perez-Velez CM, Marais BJ. Tuberculosis in children. N Engl J Med 2012; 367: 348-361.

https://doi.org/10.1056/NEJMra1008049

Triasih R, Rutherford M, Lestari T, Utarini A, Robert- son CF, Graham SM. Contact investigation of children exposed to tuberculosis in South East Asia: a systematic review. J Trop Med 2012; 2012: 301808.

https://doi.org/10.1155/2012/301808

Graham SM. Missed opportunities for prevention of tu- berculosis in children. Ann Trop Paediatr 2011; 31: 297-299.

https://doi.org/10.1179/146532811X13142348016691

Hill PC, Rutherford ME, Audas R, van Crevel R, Graham 79. SM. Closing the policy-practice gap in the management Connett GJ. Bronchoalveolar lavage. Paediatr Respir Rev 2000; 1: 52-56. of child contacts of tuberculosis cases in developing countries. PLoS Med 2011; 8: e1001105.

https://doi.org/10.1371/journal.pmed.1001105

Hesseling AC, Graham SM, Cuevas LE. Rapid molecular detection of tuberculosis. N Engl J Med 2011; 364: 183- 184; author reply 184-185.

https://doi.org/10.1056/NEJMc1011919

Graham SM. The use of diagnostic systems for tuberculosis in children. Indian J Pediatr 2011; 78: 334-339.

https://doi.org/10.1007/s12098-010-0307-7

Van Rie A, Page-Shipp L, Scott L, Sanne I, Stevens W. Xpert((R)) MTB/RIF for point-of-care diagnosis of TB in 82. high-HIV burden, resource-limited countries: hype or hope? Expert Rev Mol Diagn 2010; 10: 937-946.

https://doi.org/10.1586/erm.10.67

Blakemore R, Story E, Helb D, Kop J, Banada P, Owens MR, et al. Evaluation of the analytical performance of the Xpert MTB/RIF assay. J Clin Microbiol 2010; 48: 2495-2501

https://doi.org/10.1128/JCM.00128-10

Helb D, Jones M, Story E, Boehme C, Wallace E, Ho K, et al. Rapid detection of Mycobacterium tuberculosis and 84. rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol 2010; 48: 229-237.

https://doi.org/10.1128/JCM.01463-09

Steingart KR, Sohn H, Schiller I, Kloda LA, Boehme CC, Pai M, et al. Xpert(R) MTB/RIF assay for pulmonary tu- berculosis and rifampicin resistance in adults. Cochrane 85. Database Syst Rev 2013; 1: CD009593.

https://doi.org/10.1002/14651858.CD009593.pub2

Horne DJ, Pinto LM, Arentz M, Lin SY, Desmond E, Flores LL, et al. Diagnostic accuracy and reproducibility of WHO-endorsed phenotypic drug susceptibility testing methods for first-line and second-line antituberculosis drugs. J Clin Microbiol 2013; 51: 393-401.

https://doi.org/10.1128/JCM.02724-12

Davis JL, Cattamanchi A, Cuevas LE, Hopewell PC, Steingart KR. Diagnostic accuracy of same-day microscopy versus standard microscopy for pulmonary tuberculosis: 87. a systematic review and meta-analysis. Lancet Infect Dis 2013; 13: 147-154.

https://doi.org/10.1016/S1473-3099(12)70232-3

Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, et al. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 2010; 363: 1005-1015.

https://doi.org/10.1056/NEJMoa0907847

Shinnick TM, Good RC. Diagnostic mycobacteriology laboratory practices. Clin Infect Dis 1995; 21: 291-299.

https://doi.org/10.1093/clinids/21.2.291

Li LM, Bai LQ, Yang HL, Xiao CF, Tang RY, Chen YF, et al. Sputum induction to improve the diagnostic yield in patients with suspected pulmonary tuberculosis. Int J Tuberc Lung Dis 1999; 3: 1137-1139.

Parry CM, Kamoto O, Harries AD, Wirima JJ, Nyirenda CM, Nyangulu DS, et al. The use of sputum induction for establishing a diagnosis in patients with suspected pul- monary tuberculosis in Malawi. Tuber Lung Dis 1995; 76: 72-76.

https://doi.org/10.1016/0962-8479(95)90583-9

Hartung TK, Maulu A, Nash J, Fredlund VG. Suspected pulmonary tuberculosis in rural South Africa--sputum in- duction as a simple diagnostic tool? S Afr Med J 2002; 92: 455-458.

Abadco DL, Steiner P. Gastric lavage is better than bron- choalveolar lavage for isolation of Mycobacterium tuberculosis in childhood pulmonary tuberculosis. Pediatr Infect Dis J 1992; 11: 735-738.

https://doi.org/10.1097/00006454-199209000-00013

Pomputius WF, 3rd, Rost J, Dennehy PH, Carter EJ. Stan- dardization of gastric aspirate technique improves yield in the diagnosis of tuberculosis in children. Pediatr Infect Dis J 1997; 16: 222-226.

https://doi.org/10.1097/00006454-199702000-00011

Connett GJ. Bronchoalveolar lavage. Paediatr Respir Rev 2000; 1: 52-56.

https://doi.org/10.1053/prrv.2000.0007

Wainwright CE, Grimwood K, Carlin JB, Vidmar S, Coo- per PJ, Francis PW, et al. Safety of bronchoalveolar la- vage in young children with cystic fibrosis. Pediatr Pulmo- nol 2008; 43: 965-972.

https://doi.org/10.1002/ppul.20885

de Gracia J, Curull V, Vidal R, Riba A, Orriols R, Martin N, et al. Diagnostic value of bronchoalveolar lavage in suspected pulmonary tuberculosis. Chest 1988; 93: 329- 332.

https://doi.org/10.1378/chest.93.2.329

Grange JM, Stanford JL, Beck JS. Lymphocyte and lym- phocyte subset numbers in blood and bronchoalveolar lavage and pleural fluid in various forms of human pul- monary tuberculosis. Thorax 1992; 47: 1085-1086.

https://doi.org/10.1136/thx.47.12.1085-a

Chan HS, Sun AJ, Hoheisel GB. Bronchoscopic aspiration and bronchoalveolar lavage in the diagnosis of sputum smear negative pulmonary tuberculosi. Lung 1990; 168: 215 -220

https://doi.org/10.1007/BF02719695

Liam CK, Chen YC, Yap SF, Srinivas P, Poi PJ. Detection of Mycobacterium tuberculosis in bronchoalveolar lavage from patients with sputum smear-negative pulmonary tuberculosis using a polymerase chain reaction assay. Respirology 1998; 3: 125-129.

https://doi.org/10.1111/j.1440-1843.1998.tb00110.x

Chow F, Espiritu N, Gilman RH, Gutierrez R, Lopez S, Es- combe AR, et al. La cuerda dulce--a tolerability and ac- ceptability study of a novel approach to specimen collec- tion for diagnosis of paediatric pulmonary tuberculosis. BMC Infect Dis 2006; 6: 67.

https://doi.org/10.1186/1471-2334-6-67

Beatty WL, Rhoades ER, Ullrich HJ, Chatterjee D, Heuser JE, Russell DG. Trafficking and release of mycobacterial lipids from infected macrophages. Traffic 2000; 1: 235- 247.

https://doi.org/10.1034/j.1600-0854.2000.010306.x

Beatty WL, Ullrich HJ, Russell DG. Mycobacterial surface moieties are released from infected macrophages by a constitutive exocytic event. Eur J Cell Biol 2001; 80: 31- 40.

https://doi.org/10.1078/0171-9335-00131

Rhoades E, Hsu F, Torrelles JB, Turk J, Chatterjee D, Rusell DG. Identification and macrophage- activating activity of glycolipids released from intracellular Mycobacteoratory practices. Clin Infect Dis 1995; 21: 291-299.

Bhatnagar S, Schorey JS. Exosomes released from infected macrophages contain Mycobacterium avium glycopeptidolipids and are proinflammatory. J Biol Chem 2007; 282: 25779-25789.

https://doi.org/10.1074/jbc.M702277200

Harth G, Horwitz MA, Tabatadze D, Zamecnik PC. Targeting the Mycobacterium tuberculosis 30/32-kDa mycolyl transferase complex as a therapeutic strategy against tuberculosis: Proof of principle by using antisense technology. Proc Natl Acad Sci U S A 2002; 99: 15614-15619.

https://doi.org/10.1073/pnas.242612299

Braunstein M, Espinosa BJ, Chan J, Belisle JT, Jacobs WR, Jr. SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis. Mol Microbiol 2003; 48: 453-464.

https://doi.org/10.1046/j.1365-2958.2003.03438.x

de Jonge MI, Pehau-Arnaudet G, Fretz MM, Romain F, Bottai D, Brodin P, et al. ESAT-6 from Mycobacterium tuberculosis dissociates from its putative chaperone CFP- 10 under acidic conditions and exhibits membranelysing activity. J Bacteriol 2007; 189: 6028-6034.

https://doi.org/10.1128/JB.00469-07

Samuel LP, Song CH, Wei J, Roberts EA, Dahl JL, Barry CE, 3rd, et al. Expression, production and release of the Eis protein by Mycobacterium tuberculosis during infection of macrophages and its effect on cytokine secretion. Mi- crobiology 2007; 153: 529-540.

https://doi.org/10.1099/mic.0.2006/002642-0

Phillips M, Basa-Dalay V, Blais J, Bothamley G, Chatur- vedi A, Modi KD, et al. Point-of-care breath test for bio- markers of active pulmonary tuberculosis. Tuberculosis (Edinb) 2012; 92: 314-320.

https://doi.org/10.1016/j.tube.2012.04.002

Phillips M, Basa-Dalay V, Bothamley G, Cataneo RN, Lam PK, Natividad MP, et al. Breath biomarkers of active pulmonary tuberculosis. Tuberculosis (Edinb) 2010; 90: 145-151.

https://doi.org/10.1016/j.tube.2010.01.003

Phillips M, Cataneo RN, Condos R, Ring Erickson GA, Greenberg J, La Bombardi V, et al. Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis (Edinb) 2007; 87: 44-52.

https://doi.org/10.1016/j.tube.2006.03.004

Syhre M, Manning L, Phuanukoonnon S, Harino P, Chambers ST. The scent of Mycobacterium tuberculosis- -part II breath. Tuberculosis (Edinb) 2009; 89: 263-266.

https://doi.org/10.1016/j.tube.2009.04.003

Bhatnagar S, Shinagawa K, Castellino FJ, Schorey JS. Exo- somes released from macrophages infected with intrace- llular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood 2007; 110: 3234-3244.

https://doi.org/10.1182/blood-2007-03-079152

Geisel RE, Sakamoto K, Russell DG, Rhoades ER. In vivo activity of released cell wall lipids of Mycobacterium bo- vis bacillus Calmette-Guerin is due principally to trehalo- se mycolates. J Immunol 2005; 174: 5007-5015.

https://doi.org/10.4049/jimmunol.174.8.5007

Guenin-Mace L, Simeone R, Demangel C. Lipids of pathogenic Mycobacteria: contributions to virulence and host immune suppression. Transbound Emerg Dis 2009; 56: 255-268.

https://doi.org/10.1111/j.1865-1682.2009.01072.x

Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Luirink J, Vandenbroucke-Grauls CM, et al. Type VII se- cretion--mycobacteria show the way. Nat Rev Microbiol 2007; 5: 883-891.

https://doi.org/10.1038/nrmicro1773

Driessen NN, Ummels R, Maaskant JJ, Gurcha SS, Besra GS, Ainge GD, et al. Role of phosphatidylinositol manno- sides in the interaction between mycobacteria and DC- SIGN. Infect Immun 2009; 77: 4538-4547.

https://doi.org/10.1128/IAI.01256-08

Mazurek J, Ignatowicz L, Kallenius G, Svenson SB, Paw- lowski A, Hamasur B. Divergent effects of mycobacterial cell wall glycolipids on maturation and function of hu- man monocyte-derived dendritic cells. PLoS One 2012; 7: e42515.

https://doi.org/10.1371/journal.pone.0042515

Vergne I, Fratti RA, Hill PJ, Chua J, Belisle J, Deretic V.Mycobacterium tuberculosis phagosome maturation arrest: mycobacterial phosphatidylinositol analog phos- phatidylinositol mannoside stimulates early endosomal fusion. Mol Biol Cell 2004; 15: 751-760.

https://doi.org/10.1091/mbc.e03-05-0307

Guerardel Y, Maes E, Elass E, Leroy Y, Timmerman P, Bes- ra GS, et al. Structural study of lipomannan and lipoarab- inomannan from Mycobacterium chelonae. Presence of unusual components with alpha 1,3-mannopyranose side chains. J Biol Chem 2002; 277: 30635-30648.

https://doi.org/10.1074/jbc.M204398200

Khoo KH, Dell A, Morris HR, Brennan PJ, Chatterjee D. Inositol phosphate capping of the nonreducing termini of lipoarabinomannan from rapidly growing strains of Mycobacterium. J Biol Chem 1995; 270: 12380-12389.

https://doi.org/10.1074/jbc.270.21.12380

Brown MC, Taffet SM. Lipoarabinomannans derived from different strains of Mycobacterium tuberculosis differentially stimulate the activation of NF-kappa B and KBF1 in murine macrophages. Infect Immun 1995; 63: 1960-1968.

Mahon RN, Sande OJ, Rojas RE, Levine AD, Harding CV, Boom WH. Mycobacterium tuberculosis ManLAM inhib- its T-cell-receptor signaling by interference with ZAP-70, Lck and LAT phosphorylation. Cell Immunol 2012; 275: 98-105.

https://doi.org/10.1016/j.cellimm.2012.02.009

Rojas M, Garcia LF, Nigou J, Puzo G, Olivier M. Manno- sylated lipoarabinomannan antagonizes Mycobacterium tuberculosis-induced macrophage apoptosis by altering Ca+2-dependent cell signaling. J Infect Dis 2000; 182: 240-251.

https://doi.org/10.1086/315676

Elbein AD, Pan YT, Pastuszak I, Carroll D. New insights on trehalose: a multifunctional molecule. Glycobiology 2003; 13: 17R-27R.

https://doi.org/10.1093/glycob/cwg047

Reither K, Saathoff E, Jung J, Minja LT, Kroidl I, Saad E, et al. Low sensitivity of a urine LAM-ELISA in the diagnosis of pulmonary tuberculosis. BMC Infect Dis 2009; 9: 141.

https://doi.org/10.1186/1471-2334-9-141

Lopez-Sanchez LM, Jurado-Gamez B, Feu-Collado N, Valverde A, Canas A, Fernandez-Rueda JL, et al. Exhaled breath condensate biomarkers for the early diagnosis of lung cancer using proteomics. Am J Physiol Lung Cell Mol Physiol 2017; 313: L664-L676.

https://doi.org/10.1152/ajplung.00119.2017

Mehta A, Cordero J, Dobersch S, Romero-Olmedo AJ, Savai R, Bodner J, et al. Non-invasive lung cancer diag- nosis by detection of GATA6 and NKX2-1 isoforms in ex- haled breath condensate. EMBO Mol Med 2016; 8: 1380- 1389.

https://doi.org/10.15252/emmm.201606382

Rozy A, Czerniawska J, Stepniewska A, Wozbinska B, Goljan A, Puscinska E, et al. Inflammatory markers in the exhaled breath condensate of patients with pulmonary sarcoidosis. J Physiol Pharmacol 2006; 57 Suppl 4: 335- 340.

Thomas PS, Lowe AJ, Samarasinghe P, Lodge CJ, Huang Y, Abramson MJ, et al. Exhaled breath condensate in pe- diatric asthma: promising new advance or pouring cold water on a lot of hot air? a systematic review. Pediatr Pulmonol 2013; 48: 419-442.

https://doi.org/10.1002/ppul.22776

Lawn SD. Point-of-care detection of lipoarabinomannan (LAM) in urine for diagnosis of HIV-associated tubercu- losis: a state of the art review. BMC Infect Dis 2012; 12: 103.

https://doi.org/10.1186/1471-2334-12-103

Hamasur B, Haile M, Pawlowski A, Schroder U, Kalle- nius G, Svenson SB. A mycobacterial lipoarabinomannan specific monoclonal antibody and its F(ab') fragment prolong survival of mice infected with Mycobacterium tuberculosis. Clin Exp Immunol 2004; 138: 30-38.

https://doi.org/10.1111/j.1365-2249.2004.02593.x

Balcha TT, Winqvist N, Sturegard E, Skogmar S, Reepalu A, Jemal ZH, et al. Detection of lipoarabinomannan in urine for identification of active tuberculosis among HIV-positive adults in Ethiopian health centres. Trop Med Int Health 2014; 19: 734-742.

https://doi.org/10.1111/tmi.12308

Boehme C, Molokova E, Minja F, Geis S, Loscher T, Maboko L, et al. Detection of mycobacterial lipoarabino- mannan with an antigen-capture ELISA in unprocessed urine of Tanzanian patients with suspected tuberculosis. Trans R Soc Trop Med Hyg 2005; 99: 893-900.

https://doi.org/10.1016/j.trstmh.2005.04.014

Suwanpimolkul G, Kawkitinarong K, Manosuthi W, Sophonphan J, Gatechompol S, Ohata PJ, et al. Utility of urine lipoarabinomannan (LAM) in diagnosing tuber- culosis and predicting mortality with and without HIV: prospective TB cohort from the Thailand Big City TB Re- search Network. Int J Infect Dis 2017; 59: 96-102.

https://doi.org/10.1016/j.ijid.2017.04.017

Peter J, Green C, Hoelscher M, Mwaba P, Zumla A, Dhe- da K. Urine for the diagnosis of tuberculosis: current approaches, clinical applicability, and new developments. Curr Opin Pulm Med 2010; 16: 262-270.

https://doi.org/10.1097/MCP.0b013e328337f23a

Daley P, Michael JS, Hmar P, Latha A, Chordia P, Mathai D, et al. Blinded evaluation of commercial urinary li- poarabinomannan for active tuberculosis: a pilot study. Int J Tuberc Lung Dis 2009; 13: 989-995.

Mutetwa R, Boehme C, Dimairo M, Bandason T, Munya- ti SS, Mangwanya D, et al. Diagnostic accuracy of com- mercial urinary lipoarabinomannan detection in African tuberculosis suspects and patients. Int J Tuberc Lung Dis 2009; 13: 1253-1259.

Gupta-Wright A, Peters JA, Flach C, Lawn SD. Detection of lipoarabinomannan (LAM) in urine is an independent predictor of mortality risk in patients receiving treatment for HIV-associated tuberculosis in sub-Saharan Africa: a systematic review and meta-analysis. BMC Med 2016; 14: 53.

https://doi.org/10.1186/s12916-016-0603-9

Peter JG, Theron G, Dheda K. Can point-of-care urine LAM strip testing for tuberculosis add value to clinical decision making in hospitalised HIV-infected persons? PLoS One 2013; 8: e54875.

https://doi.org/10.1371/journal.pone.0054875

Sabur NF, Esmail A, Brar MS, Dheda K. Diagnosing tuber- culosis in hospitalized HIV-infected individuals who can- not produce sputum: is urine lipoarabinomannan testing the answer? BMC Infect Dis 2017; 17: 803.

https://doi.org/10.1186/s12879-017-2914-7

Sahle SN, Asress DT, Tullu KD, Weldemariam AG, Tola HH, Awas YA, et al. Performance of point-of-care urine test in diagnosing tuberculosis suspects with and without HIV infection in selected peripheral health settings of Addis Ababa, Ethiopia. BMC Res Notes 2017; 10: 74.

https://doi.org/10.1186/s13104-017-2404-4

Zijenah LS, Kadzirange G, Bandason T, Chipiti MM, Gwambiwa B, Makoga F, et al. Comparative performan- ce characteristics of the urine lipoarabinomannan strip test and sputum smear microscopy in hospitalized HIV- infected patients with suspected tuberculosis in Harare, Zimbabwe. BMC Infect Dis 2016; 16: 20.

https://doi.org/10.1186/s12879-016-1339-z

Drain PK, Gounder L, Sahid F, Moosa MY. Rapid Urine LAM Testing Improves Diagnosis of Expectorated Smear- Negative Pulmonary Tuberculosis in an HIV-endemic Re- gion. Sci Rep 2016; 6: 19992.

https://doi.org/10.1038/srep19992

Dheda K, Davids V, Lenders L, Roberts T, Meldau R, Ling D, et al. Clinical utility of a commercial LAM-ELISA assay for TB diagnosis in HIV-infected patients using urine and sputum samples. PLoS One 2010; 5: e9848.

https://doi.org/10.1371/journal.pone.0009848

Lawn SD, Kerkhoff AD, Burton R, Meintjes G. Underes- timation of the incremental diagnostic yield of HIV-asso- ciated tuberculosis in studies of the Determine TB-LAM Ag urine assay. AIDS 2014; 28: 1846-1848.

https://doi.org/10.1097/QAD.0000000000000305

Shah M, Variava E, Holmes CB, Coppin A, Golub JE, Mc- Callum J, et al. Diagnostic accuracy of a urine lipoarabi- nomannan test for tuberculosis in hospitalized patients in a High HIV prevalence setting. J Acquir Immune Defic Syndr 2009; 52: 145-151.

https://doi.org/10.1097/QAI.0b013e3181b98430

Sada E, Brennan PJ, Herrera T, Torres M. Evaluation of lipoarabinomannan for the serological diagnosis of tu- berculosis. J Clin Microbiol 1990; 28: 2587-2590.

Sada E, Aguilar D, Torres M, Herrera T. Detection of lipoarabinomannan as a diagnostic test for tuberculosis. J Clin Microbiol 1992; 30: 2415-2418.

Pereira Arias-Bouda LM, Nguyen LN, Ho LM, Kuijper S, Jansen HM, Kolk AH. Development of antigen detection assay for diagnosis of tuberculosis using sputum sam- ples. J Clin Microbiol 2000; 38: 2278-2283.

Dheda K, Van-Zyl Smit RN, Sechi LA, Badri M, Meldau R, Symons G, et al. Clinical diagnostic utility of IP-10 and LAM antigen levels for the diagnosis of tuberculous pleu- ral effusions in a high burden setting. PLoS One 2009; 4: e4689.

https://doi.org/10.1371/journal.pone.0004689

Sardella IG, Singh M, Kumpfer S, Heringer RR, Saad MH, Sohler MP. Evaluation of Lionex TB kits and mycobacte- rial antigens for IgG and IgA detection in cerebrospinal fluid from tuberculosis meningitis patients. Mem Inst Oswaldo Cruz 2010; 105: 722-728.

https://doi.org/10.1590/S0074-02762010000500022

Patel VB, Singh R, Connolly C, Coovadia Y, Peer AK, Parag P, et al. Cerebrospinal T-cell responses aid in the diagnosis of tuberculous meningitis in a human immuno- deficiency virus- and tuberculosis-endemic population. Am J Respir Crit Care Med 2010; 182: 569-577.

https://doi.org/10.1164/rccm.200912-1931OC

Patel VB, Singh R, Connolly C, Kasprowicz V, Zumla A, Ndungu T, et al. Comparison of a clinical prediction rule and a LAM antigen-detection assay for the rapid diag- nosis of TBM in a high HIV prevalence setting. PLoS One 2010; 5: e15664.

https://doi.org/10.1371/journal.pone.0015664

Demkow U, Filewska M, Bialas B, Szturmowicz M, Zie- lonka T, Wesolowski S, et al. [Antimycobacterial antibo- dy level in pleural, pericardial and cerebrospinal fluid of patients with tuberculosis]. Pneumonol Alergol Pol 2004; 72: 105-110.

Fujita Y, Naka T, Doi T, Yano I. Direct molecular mass de- termination of trehalose monomycolate from 11 species of mycobacteria by MALDI-TOF mass spectrometry. Mi- crobiology 2005; 151: 1443-1452.

https://doi.org/10.1099/mic.0.27791-0

Beccaria M, Mellors TR, Petion JS, Rees CA, Nasir M, Systrom HK, et al. Preliminary investigation of human exhaled breath for tuberculosis diagnosis by multidimen- sional gas chromatography - Time of flight mass spec- trometry and machine learning. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1074-1075: 46-50.

https://doi.org/10.1016/j.jchromb.2018.01.004

French GL, Chan CY, Cheung SW, Oo KT. Diagnosis of pulmonary tuberculosis by detection of tuberculostearic acid in sputum by using gas chromatography-mass spec- trometry with selected ion monitoring. J Infect Dis 1987; 156: 356-362.

https://doi.org/10.1093/infdis/156.2.356

James AT, Martin AJ. Gas-liquid partition chromatogra- phy: the separation and micro-estimation of ammonia and the methylamines. Biochem J 1952; 52: 238-242.

https://doi.org/10.1042/bj0520238

James AT, Martin AJ. Gas-liquid partition chromatogra- phy; the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem J 1952; 50: 679-690.

https://doi.org/10.1042/bj0500679

Martin AJ, Synge RL. A new form of chromatogram em- ploying two liquid phases: A theory of chromatography. 2. Application to the micro-determination of the higher monoamino-acids in proteins. Biochem J 1941; 35: 1358- 1368.

https://doi.org/10.1042/bj0351358

Jackson SK, Stark JM, Taylor S, Harwood JL. Changes in phospholipid fatty acid composition and triacylglyce- rol content in mouse tissues after infection with bacille Calmette-Guerin. Br J Exp Pathol 1989; 70: 435-441.

Ozbek A, Aktas O. Identification of three strains of Myco- bacterium species isolated from clinical samples using fatty acid methyl ester profiling. J Int Med Res 2003; 31: 133-140.

https://doi.org/10.1177/147323000303100210

Ohashi DK, Wade TJ, Mandle RJ. Characterization of ten species of mycobacteria by reaction-gas-liquid chroma- tography. J Clin Microbiol 1977; 6: 469-473.

Larsson L, Jantzen E, Johnsson J. Gas chromatographic fatty acid profiles for characterisation of mycobacteria: an interlaboratory methodological evaluation. Eur J Clin Microbiol 1985; 4: 483-487.

https://doi.org/10.1007/BF02014429

Cepelak I, Dodig S. Exhaled breath condensate: a new method for lung disease diagnosis. Clin Chem Lab Med 2007; 45: 945-952.

https://doi.org/10.1515/CCLM.2007.326

Teranishi R, Mon TR, Robinson AB, Cary P, Pauling L. Gas chromatography of volatiles from breath and urine. Anal Chem 1972; 44: 18-20.

https://doi.org/10.1021/ac60309a012

Pauling L, Robinson AB, Teranishi R, Cary P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc Natl Acad Sci U S A 1971; 68: 2374- 2376.

https://doi.org/10.1073/pnas.68.10.2374

Kuban P, Foret F. Exhaled breath condensate: determi- nation of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review. Anal Chim Acta 2013; 805: 1-18.

https://doi.org/10.1016/j.aca.2013.07.049

Chambers ST, Scott-Thomas A, Epton M. Developments in novel breath tests for bacterial and fungal pulmonary infection. Curr Opin Pulm Med 2012; 18: 228-232.

https://doi.org/10.1097/MCP.0b013e328351f98b

Nizio KD, Perrault KA, Troobnikoff AN, Ueland M, Sho- ma S, Iredell JR, et al. In vitro volatile organic compound profiling using GCxGC-TOFMS to differentiate bacteria associated with lung infections: a proof-of-concept study. J Breath Res 2016; 10: 026008.

https://doi.org/10.1088/1752-7155/10/2/026008

Reinhold P, Kirschvink N, Theegarten D, Berndt A. An experimentally induced Chlamydia suis infection in pigs results in severe lung function disorders and pulmonary inflammation. Vet Res 2008; 39: 35.

https://doi.org/10.1051/vetres:2008012

Yildirim Z, Bozkurt B, Ozol D, Armutcu F, Akgedik R, Ka- ramanli H, et al. Increased Exhaled 8-Isoprostane and In- terleukin-6 in Patients with Helicobacter pylori Infection. Helicobacter 2016; 21: 389-394.

https://doi.org/10.1111/hel.12302

Syhre M, Chambers ST. The scent of Mycobacterium tu- berculosis. Tuberculosis (Edinb) 2008; 88: 317-323.

https://doi.org/10.1016/j.tube.2008.01.002

Han D, Wang Z, Cheng J, Wang Q, Chen X, Wang H. Vola- tile organic compounds (VOCs) during non-haze and haze days in Shanghai: characterization and secondary organic aerosol (SOA) formation. Environ Sci Pollut Res Int 2017; 24: 18619-18629.

https://doi.org/10.1007/s11356-017-9433-3

Hartikainen A, Yli-Pirila P, Tiitta P, Leskinen A, Kortelai- nen M, Orasche J, et al. Volatile organic compounds from logwood combustion: Emissions and transformation un- der dark and photochemical aging conditions in a smog chamber. Environ Sci Technol 2018.

https://doi.org/10.1021/acs.est.7b06269

Holopainen JK, Kivimaenpaa M, Nizkorodov SA.Plant-derived Secondary Organic Material in the Air and Ecosystems. Trends Plant Sci 2017; 22: 744-753.

https://doi.org/10.1016/j.tplants.2017.07.004

LiuT,LiuQ,LiZ,HuoL,ChanM,LiX,etal.Emissionof volatile organic compounds and production of secondary organic aerosol from stir-frying spices. Sci Total Environ 2017; 599-600: 1614-1621.

https://doi.org/10.1016/j.scitotenv.2017.05.147

Mosquera-Restrepo SF, Caro AC, Garcia LF, Pelaez-Jaramillo CA, Rojas M. Fatty acid derivative, chemokine, and cytokine profiles in exhaled breath condensates can dif- ferentiate adult and children paucibacillary tuberculosis patients. J Breath Res 2017; 11: 016003.

https://doi.org/10.1088/1752-7163/11/1/016003

Butler WR, Guthertz LS. Mycolic acid analysis by high-performance liquid chromatography for identifica- tion of Mycobacterium species. Clin Microbiol Rev 2001; 14: 704-726.

https://doi.org/10.1128/CMR.14.4.704-726.2001

Levy-Frebault V, Goh KS, David HL. Mycolic acid analysis for clinical identification of Mycobacterium avium and related mycobacteria. J Clin Microbiol 1986; 24: 835-839.

Viader-Salvado JM, Molina-Torres CA, Guerrero-Olazaran M. Detection and identification of mycobac- teria by mycolic acid analysis of sputum specimens and young cultures. J Microbiol Methods 2007; 70: 479-483.

https://doi.org/10.1016/j.mimet.2007.06.002

Guerrant GO, Lambert MA, Moss CW. Gas-chromato- graphic analysis of mycolic acid cleavage products in my- cobacteria. J Clin Microbiol 1981; 13: 899-907.

Leite CQ, da Silva Rocha A, de Andrade Leite SR, Ferreira RM, Suffys PN, de Souza Fonseca L, et al. A comparison of mycolic acid analysis for nontuberculous mycobacteria identification by thin-layer chromatography and molecu- lar methods. Microbiol Immunol 2005; 49: 571-578.

https://doi.org/10.1111/j.1348-0421.2005.tb03642.x

Tisdall PA, Anhalt JP. Rapid differentiation of Streptomy- ces from Nocardia by liquid chromatography. J Clin Mi- crobiol 1979; 10: 503-505.

Kaal E, Kolk AH, Kuijper S, Janssen HG. A fast method for the identification of Mycobacterium tuberculosis in spu- tum and cultures based on thermally assisted hydrolysis and methylation followed by gas chromatography-mass spectrometry. J Chromatogr A 2009; 1216: 6319-6325.

https://doi.org/10.1016/j.chroma.2009.06.078

Torrelles JB, Sieling PA, Zhang N, Keen MA, McNeil MR, Belisle JT, et al. Isolation of a distinct Mycobacterium tu- berculosis mannose-capped lipoarabinomannan isoform responsible for recognition by CD1b-restricted T cells. Glycobiology 2012; 22: 1118-1127.

https://doi.org/10.1093/glycob/cws078

Larsson L, Mardh P, Odham G, Westerdahl G. Use of se- lected ion monitoring for detection of tuberculostearic and C32 mycocerosic acid in mycobacteria and in five- day-old cultures of sputum specimens from patients with pulmonary tuberculosis. Acta Pathol Microbiol Scand B 1981; 89: 245-251.

https://doi.org/10.1111/j.1699-0463.1981.tb00184_89B.x

Traunmuller F, Zeitlinger MA, Stoiser B, Lagler H, Abdel Salam HA, Presterl E, et al. Circulating tuberculostearic acid in tuberculosis patients. Scand J Infect Dis 2003; 35: 790-793.

https://doi.org/10.1080/00365540310017032

Asselineau J, Lederer E. Structure of the mycolic acids of Mycobacteria. Nature 1950; 166: 782-783.

https://doi.org/10.1038/166782a0

Liu J, Barry CE, 3rd, Besra GS, Nikaido H. Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem 1996; 271: 29545-29551.

https://doi.org/10.1074/jbc.271.47.29545

Dao DN, Sweeney K, Hsu T, Gurcha SS, Nascimento IP, Roshevsky D, et al. Mycolic acid modification by the mmaA4 gene of M. tuberculosis modulates IL-12 produc- tion. PLoS Pathog 2008; 4: e1000081.

https://doi.org/10.1371/journal.ppat.1000081

Yuan Y, Zhu Y, Crane DD, Barry CE, 3rd. The effect of ox- ygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. Mol Microbiol 1998; 29: 1449-1458.

https://doi.org/10.1046/j.1365-2958.1998.01026.x

Minnikin DE, Minnikin SM, Parlett JH, Goodfellow M. Mycolic acid patterns of some rapidly-growing species of Mycobacterium. Zentralbl Bakteriol Mikrobiol Hyg A 1985; 259: 446-460.

https://doi.org/10.1016/S0176-6724(85)80076-6

Stodola FH, Deinema MH, Spencer JF. Extracellular lipids of yeasts. Bacteriol Rev 1967; 31: 194-213.

Etemadi AH. [Isolation of Isopentadecanoic and Isohep- tadecanoic Acids from the Lipids of Corynebacterium Parvum]. Bull Soc Chim Biol (Paris) 1963; 45: 1423-1432.

Kaneda K, Naito S, Imaizumi S, Yano I, Mizuno S, Tomi- yasu I, et al. Determination of molecular species composition of C80 or longer-chain alpha-mycolic acids in Mycobacterium spp. by gas chromatography-mass spec- trometry and mass chromatography. J Clin Microbiol 1986; 24: 1060-1070.

Tisdall PA, Roberts GD, Anhalt JP. Identification of clini- cal isolates of mycobacteria with gas-liquid chromatogra- phy alone. J Clin Microbiol 1979; 10: 506-514.

Tisdall PA, DeYoung DR, Roberts GD, Anhalt JP. Identifi- cation of clinical isolates of mycobacteria with gas-liquid chromatography: a 10-month follow-up study. J Clin Mi- crobiol 1982; 16: 400-402.

Aktas O, Ozbek A. Prevalence and in-vitro antimicrobial susceptibility patterns of Acinetobacter strains isolated from patients in intensive care units. J Int Med Res 2003; 31: 272-280.

https://doi.org/10.1177/147323000303100404

Luquin M, Lopez F, Ausina V. Capillary gas chromato- graphic analysis of mycolic acid cleavage products, cellu- lar fatty acids, and alcohols of Mycobacterium xenopi. J Clin Microbiol 1989; 27: 1403-1406.

Prout FS, Cason J, Ingersoll AW. The synthesis of tuber- culostearic acid. J Am Chem Soc 1947; 69: 1233.

https://doi.org/10.1021/ja01197a527

Anderson C. The chemistry of the lipids of the tubercle bacillus. J Biol Chem 1929; 85: 6.

Larsson L, Mardh PA, Odham G. Detection of tuberculo- stearic acid in mycobacteria and nocardiae by gas chro- matography and mass spectrometry using selected ion monitoring. J Chromatogr 1979; 163: 221-224.

https://doi.org/10.1016/S0378-4347(00)81468-1

Odham G, Larsson L, Mardh PA. Demonstration of tu- berculostearic acid in sputum from patients with pulmo- nary tuberculosis by selected ion monitoring. J Clin Invest 1979; 63: 813-819.

https://doi.org/10.1172/JCI109380

Pang JA, Chan HS, Chan CY, Cheung SW, French GL. A tuberculostearic acid assay in the diagnosis of sputum smear-negative pulmonary tuberculosis. A prospective study of bronchoscopic aspirate and lavage specimens. Ann Intern Med 1989; 111: 650-654.

https://doi.org/10.7326/0003-4819-111-8-650

Dang NA, Mourao M, Kuijper S, Walters E, Janssen HG, Kolk AH. Direct detection of Mycobacterium tuberculo- sis in sputum using combined solid phase extraction-gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 986-987: 115-122.

https://doi.org/10.1016/j.jchromb.2015.01.045

Savic B, Sjobring U, Alugupalli S, Larsson L, Miorner H. Evaluation of polymerase chain reaction, tuberculostea- ric acid analysis, and direct microscopy for the detection of Mycobacterium tuberculosis in sputum. J Infect Dis 1992; 166: 1177-1180.

https://doi.org/10.1093/infdis/166.5.1177

Mosquera-Restrepo SF, Caro AC, Pelaez-Jaramillo CA, Rojas M. Mononuclear phagocyte accumulates a stearic acid derivative during differentiation into macrophages. Effects of stearic acid on macrophage differentiation and Mycobacterium tuberculosis control. Cell Immunol 2016; 303: 24-33.

https://doi.org/10.1016/j.cellimm.2016.02.002

Cómo citar
1.
Mosquera Restrepo S, Mesa Villanueva MC, Rojas López M. Estrategias alternativas para el diagnóstico de tuberculosis: una opción para los pacientes paucibacilares. Med. Lab. [Internet]. 1 de diciembre de 2017 [citado 17 de octubre de 2021];23(11-12):513-50. Disponible en: https://medicinaylaboratorio.com/index.php/myl/article/view/4
Publicado
2017-12-01
Sección
La Clínica y el Laboratorio
Crossref Cited-by logo