Histoquímica enzimática en el diagnóstico de miopatías: revisión sistemática
Resumen
Introducción: Las enfermedades del músculo esquelético en las que la lesión supera la capacidad de adaptación conducen a cambios patológicos propios de las miopatías. En Colombia el diagnóstico se realiza mediante tinción con hematoxilina-eosina; sin embargo, la información brindada sobre algunos de los cambios del tejido muscular es limitada, por lo que es necesario realizar algunas técnicas de histoquímica enzimática según la alteración. Objetivo: Describir los criterios de tinción de diferentes técnicas histoquímicas en el diagnóstico de las miopatías. Materiales y métodos: Se realizó una revisión sistemática mediante la búsqueda de artículos en inglés y español indexados en las bases de ISI Web of Science, Ovid Medline, PubMed, ScienceDirect y EBSCO. Los descriptores MeSH utilizados fueron: “histochemistry”, “skeletal muscle”, “structural and congenital myopathies”, “fiber type fast twitch”, “fiber type slow twitch” y “NADH tetrazolium reductase”. Se asociaron a la búsqueda los términos “clinical application” y “diagnosis”. Se seleccionaron los artículos originales, reportes de casos y revisiones publicadas entre 1982 y 2014 que aplicaran las técnicas de histoquímica en el diagnóstico de una miopatía o en la investigación biomédica. Resultados: Se seleccionaron 64 publicaciones (incluidos dos libros) que fueron representativos para la redacción de este manuscrito, el cual fue complementado con imágenes de biopsias musculares procesadas en el Laboratorio de Histología de la Universidad del Valle, Colombia. Conclusiones: Un protocolo estandarizado con técnicas de histoquímica convencional y enzimática, asociado a los criterios patológicos, permite orientar el diagnóstico de las miopatías oportunamente y a un menor costo respecto a otras técnicas disponibles.
Descargas
Referencias bibliográficas
Grounds MD. The need to more precisely define aspects of skeletal muscle regeneration. Int J Biochem Cell Biol 2014; Sep 19 [Epub ahead of print].
https://doi.org/10.1016/j.biocel.2014.09.010
Wang YX, Chang NC, Rudnicki MA. Skeletal Muscle Remodeling and Regeneration. In: McManus LM, Mitchell RN, eds. Pathobiology of Human Disease: A Dynamic Encyclopedia of Disease Mechanisms. Amsterdam, Holanda: Academic Press; 2014: 567-579.
https://doi.org/10.1016/B978-0-12-386456-7.02106-7
Jozsa L, Thöring J, Järvinen M, Kannus P, Lehto M, Kvist M. Quantitative alterations in intramuscular connective tissue following immobilization: an experimental study in the rat calf muscles. Exp Mol Pathol 1988; 49: 267-278.
https://doi.org/10.1016/0014-4800(88)90039-1
Hannesson KO, Tingbø MG, Olsen RL, Enersen G, Baevre AB, Ofstad R. An immunological study of glycosaminoglycans in the connective tissue of bovine and cod skeletal muscle. Comp Biochem Physiol B Biochem Mol Biol 2007; 146: 512-520.
https://doi.org/10.1016/j.cbpb.2006.11.024
Dubowitz V, Sewry CA, Oldfors A. Muscle Biopsy: A Practical Approach: Expert Consult; Online and Print (ed 4ta). China: Saunders Ltd.; 2013.
República de Colombia, Ministerio de Salud y Protección Social, Departamento Administrativo de Ciencia Tecnología e Innovación (Colciencias), Instituto de Evaluación Tecnológica en Salud, Universidad de Antioquia. Guía de práctica clínica para la detección temprana, atención integral, seguimiento y rehabilitación de pacientes con diagnóstico de distrofia muscular. 2014. Disponible: http://gpc.minsalud.gov.co/guias/Documents/Distrofia%20Muscular/GPC-DM%2037%20para%20usuarios.pdf. Consultado: septiembre 2014.
García del Moral R. Laboratorio de Anatomía Patológica. Madrid, España: McGraw Hill; 1996.
Barresi R. From proteins to genes: immunoanalysis in the diagnosis of muscular dystrophies. Skelet Muscle 2011; 1: 24.
https://doi.org/10.1186/2044-5040-1-24
Sanes JR. The Basement Membrane/Basal Lamina of Skeletal Muscle. J Biol Chem 2003; 278: 12601-12604.
https://doi.org/10.1074/jbc.R200027200
Alexander M, Casar J, Motohashi N, Myers J, Eisenberg I, Gonzalez R, et al. Regulation of DMD pathology by an ankyrin-encoded miRNA. Skelet Muscle 2011; 1: 27.
https://doi.org/10.1186/2044-5040-1-27
QIAGEN. Muscular Dystrophies and Dystrophin-Glycoprotein Complex. © 2009. Disponible: https://www.qiagen.com/co/products/genes%20and%20pathways/pathway%20details.aspx?pwid=308.
Han R. Muscle membrane repair and inflammatory attack in dysferlinopathy. Skeletal Muscle 2011; 1: 10.
https://doi.org/10.1186/2044-5040-1-10
Waddell LB, Lemckert FA, Zheng XF, Tran J, Evesson FJ, Hawkes JM, et al. Dysferlin, annexin A1, and mitsugumin 53 are upregulated in muscular dystrophy and localize to longitudinal tubules of the T-system with stretch. J Neuropathol Exp Neurol 2011; 70: 302-313.
https://doi.org/10.1097/NEN.0b013e31821350b0
Milisenda JC, Selva-O'Callaghan A, Grau JM. The diagnosis and classification of polymyositis. J Autoimmun 2014; 48-49: 118-121.
https://doi.org/10.1016/j.jaut.2014.01.025
Huijing PA. Muscle as a collagen fiber reinforced composite: a review of force transmission in muscle and whole limb. J Biomech 1999; 32: 329-345.
https://doi.org/10.1016/S0021-9290(98)00186-9
Purslow PP. Muscle fascia and force transmission. J Bodyw Mov Ther 2010; 14: 411-417.
https://doi.org/10.1016/j.jbmt.2010.01.005
Zhang C, Gao Y. The role of transmembrane proteins on force transmission in skeletal muscle. J Biomech 2014; 47: 3232-3236.
https://doi.org/10.1016/j.jbiomech.2014.07.014
Scott W, Stevens J, Binder-Macleod S. Human Skeletal Muscle Fiber Type Classifications. Phys Ther 2001; 81: 1810-1816.
https://doi.org/10.1093/ptj/81.11.1810
Vivo J, Morales JL, Diz A, Miró F, Galisteo AM, Agüera E. Morphologic and morphometric study of the musculus obliquus dorsalis of the dog. Arch Med Vet 2004; 37: 49-54.
https://doi.org/10.4067/S0301-732X2005000100007
Hebling A, Esquisatto M, Castro LH. Estudio Histoquímico de la Enzima NADH-TR en Músculo Frontal de Conejos Norfolk (Oryctolagus cuniculus). Int J Morphol 2006; 24: 151-154.
https://doi.org/10.4067/S0717-95022006000300004
Carmo-Araujo EM, Dal-Pai-Silva M, Dal-Pai V, Cecchini R, Anjos Ferreira AL. Ischaemia and reperfusion effects on skeletal muscle tissue: morphological and histochemical studies. Int J Exp Path 2007; 88: 147-154.
https://doi.org/10.1111/j.1365-2613.2007.00526.x
De Freitas CEA, Freitas SBZ, Lopes FS, Pai-Silva MD, Picarro IC. Skeletal muscles with antagonistic muscular actions: morphological, contractile and metabolic characteristics. Int J Morphol 2009; 27: 1173-1178.
https://doi.org/10.4067/S0717-95022009000400034
Cornachione AS, Cação-Benedini LO, Chesca DL, Martinez EZ, Mattiello-Sverzut AC. Effects of eccentric exercise in rehabilitation of phasic and tonic muscles after leg immobilization in rats. Acta Histochem 2014; 116: 1216-1224.
https://doi.org/10.1016/j.acthis.2014.07.002
Lexell J, Jarvis JC, Currie J, Downham DY, Salmons S. Fibre type composition of rabbit tibialis anterior and extensor digitorum longus muscles. J Anat 1994; 185: 95-101.
Soukup T, Zacharová G, Smerdu V. Fibre type composition of soleus and extensor digitorum longus muscles in normal female inbred Lewis rats. Acta Histochem 2002; 104: 399-405.
https://doi.org/10.1078/0065-1281-00660
Graziotti GH, Rios CM, Rodríguez JM, Salinas MA, Bosco A, Paltenghi A, et al. Muscular partitioning in the semitendinosus muscle of the pig. Int J Morphol 2009; 27: 947-953.
https://doi.org/10.4067/S0717-95022009000300048
Wallace GQ, McNally EM. Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. Annu Rev Physiol 2009; 71: 37-57.
https://doi.org/10.1146/annurev.physiol.010908.163216
Barohn RJ, Dimachkie MM, Jackson CE. A pattern recognition approach to patients with a suspected myopathy. Neurol Clin 2014; 32: 569-593, vii.
https://doi.org/10.1016/j.ncl.2014.04.008
McNally EM, Pytel P. Muscle diseases: the muscular dystrophies. Annu Rev Pathol 2007; 2: 87-109.
https://doi.org/10.1146/annurev.pathol.2.010506.091936
Tsujino S, Nonaka I, DiMauro S. Glycogen storage myopathies. Neurol Clin 2000; 18: 125-150.
https://doi.org/10.1016/S0733-8619(05)70181-X
Dalakas MC. Review: An update on inflammatory and autoimmune myopathies. Neuropathol Appl Neurobiol 2011; 37: 226-242.
https://doi.org/10.1111/j.1365-2990.2010.01153.x
Nava A, Orozco-Barocio G. Abordaje en el diagnóstico diferencial de las miopatías inflamatorias. Reumatol Clin 2009; 5: 32-34.
https://doi.org/10.1016/j.reuma.2009.07.003
Vela Souto A. Protocolo diagnóstico del paciente con mialgias y debilidad muscular. Medicine 2011; 10: 5327-5331.
https://doi.org/10.1016/S0304-5412(11)70098-1
Paciello O, Papparella S. Histochemical and immunohistological approach to comparative neuromuscular diseases. Folia Histochem Cytobiol 2009; 47: 143-152.
https://doi.org/10.2478/v10042-009-0066-3
Carstens PO, Schmidt J. Diagnosis, pathogenesis and treatment of myositis: recent advances. Clin Exp Immunol 2014; 175: 349-358.
https://doi.org/10.1111/cei.12194
Meng H, Janssen PM, Grange RW, Yang L, Beggs AH, Swanson LC, et al. Tissue Triage and Freezing for Models of Skeletal Muscle Disease. J Vis Exp 2014; (89): e51586.
Bergmann M, Weis J, Probst-Cousin S. Muskel biopsie. Pathologe 2009; 30: 345-351.
https://doi.org/10.1007/s00292-009-1166-8
Lai CH, Melli G, Chang YJ, Skolasky RL, Corse AM, Wagner KR, et al. Open muscle biopsy in suspected myopathy: diagnostic yield and clinical utility. Eur J Neurol 2010; 17: 136-142.
https://doi.org/10.1111/j.1468-1331.2009.02765.x
Ridaura-Sanz C. Biopsia muscular. Acta Pediatr Mex 2008; 29: 347-354.
Weidenheim KM. Optimizing the Skeletal Muscle Biopsy. Methods Mol Biol 2014; 1180: 397-410.
https://doi.org/10.1007/978-1-4939-1050-2_24
Siepmann T, Tesch M, Krause F, Illigens BM, Stoltenburg-Didinger G. Polymyositis with cytochrome C oxidase negative fibers-a pathological and clinical challenge. Ann Diagn Pathol 2013; 17: 183-186.
https://doi.org/10.1016/j.anndiagpath.2012.10.004
Tavian D, Missaglia S, DiMauro S, Bruno C, Pegoraro E, Cenacchi G, et al. A late-onset case of neutral lipid storage disease with myopathy, dropped head syndrome, and peripheral nerve involvement. J Genet Syndr Gene Ther 2013; 4: 198.
https://doi.org/10.4172/2157-7412.1000198
Sundaram C, Meena AK, Uppin MS, Govindaraj P, Vanniarajan A, Thangaraj K, et al. Contribution of muscle biopsy and genetics to the diagnosis of chronic progressive external opthalmoplegia of mitochondrial origin. J Clin Neurosci 2011; 18: 535-538.
https://doi.org/10.1016/j.jocn.2010.06.014
Malfatti E, Nilsson J, Hedberg-Oldfors C, Hernandez-Lain A, Michel F, Dominguez-Gonzalez C, et al. A new muscle glycogen storage disease associated with glycogenin-1 deficiency. Ann Neurol 2014; Oct 31 [Epub ahead of print].
https://doi.org/10.1002/ana.24284
Grady JP, Campbell G, Ratnaike T, Blakely EL, Falkous G, Nesbitt V, et al. Disease progression in patients with single, large-scale mitochondrial DNA deletions. Brain 2014; 137: 323-334.
https://doi.org/10.1093/brain/awt321
Blakely EL, Yarham JW, Alston CL, Craig K, Poulton J, Brierley C, et al. Pathogenic mitochondrial tRNA point mutations: nine novel mutations affirm their importance as a cause of mitochondrial disease. Hum Mutat 2013; 34: 1260-1268.
https://doi.org/10.1002/humu.22358
Pronicki M, Matyja E, Piekutowska-Abramczuk D, Szymanska-Debinska T, Karkucinska-Wieckowska A, Karczmarewicz E, et al. Light and electron microscopy characteristics of the muscle of patients with SURF1 gene mutations associated with Leigh disease. J Clin Pathol 2008; 61: 460-466.
https://doi.org/10.1136/jcp.2007.051060
Wallgren-Pettersson C. Nemaline and myotubular myopathies. Semin Pediatr Neurol 2002; 9: 132-144.
https://doi.org/10.1053/spen.2002.33804
Feeney EJ, Austin S, Chien YH, Mandel H, Schoser B, Prater S, et al. The value of muscle biopsies in Pompe disease: identifying lipofuscin inclusions in juvenile- and adult-onset patients. Acta Neuropathol Commun 2014; 2: 2.
https://doi.org/10.1186/2051-5960-2-2
Larsson NG, Oldfors A. Mitochondrial myopathies. Acta Physiol Scand 2001; 171: 385-393.
https://doi.org/10.1046/j.1365-201x.2001.00842.x
Latorre R, Gil F, Vasquez J. Skeletal muscle fiber types in the dog. J Anat 1993; 182: 329-337.
Kim JY, Jeong EH, Park KD, Koo H. Myofibrillar Myopathy-A Case Report. Korean Journal of Pathology 2010; 44: 426-430.
https://doi.org/10.4132/KoreanJPathol.2010.44.4.426
North KN, Wang CH, Clarke N, Jungbluth H, Vainzof M, Dowling JJ, et al. Approach to the diagnosis of congenital myopathies. Neuromuscul Disord 2014; 24: 97-116.
https://doi.org/10.1016/j.nmd.2013.11.003
Nakatani T, Nakashima T, Kita T, Hirofuji C, Itoh K, Ishihara A. Succinate Dehydrogenase Activities of Fibers in the Rat Extensor Digitorum Longus, Soleus, and Cardiac Muscles. Arch Histol Cytol 1999; 62: 393-399.
https://doi.org/10.1679/aohc.62.393
Reimann J, Kunz WS, Vielhaber S, Kappes-Horn K, Schröder R. Mitochondrial dysfunction in myofibrillar myopathy. Neuropathol Appl Neurobiol 2003; 29: 45-51.
https://doi.org/10.1046/j.1365-2990.2003.00428.x
Wani AA, Rangrez AY, Kumar H, Bapat SA, Suresh CG, Barnabas S, et al. Analysis of reactive oxygen species and antioxidant defenses in complex I deficient patients revealed a specific increase in superoxide dismutase activity. Free Radic Res 2008; 42: 415-427.
https://doi.org/10.1080/10715760802068571
Reichmann H. Enzyme activity analyses along ragged-red and normal single muscle fibres. Histochemistry 1992; 98: 131-134.
https://doi.org/10.1007/BF00717004
Van Hoove J, Freehauf C, Miyamoto S, Vladutiu GD, Pancrudo J, Bonilla E, et al. Infantile cardiomyopathy caused by the T14709C mutation in the mitochondrial tRNA glutamic acid gene. Eur J Pediatr 2008; 167: 771-776.
https://doi.org/10.1007/s00431-007-0587-8
van Adel BA, Tarnopolsky MA. Metabolic myopathies: update 2009. J Clin Neuromuscul Dis 2009; 10: 97-121.
https://doi.org/10.1097/CND.0b013e3181903126
Cherin P. Polimiositis y dermatomiositis. EMC - Aparato Locomotor 2003; 36: 1-11.
https://doi.org/10.1016/S1286-935X(03)72284-9
Bönnemann CG, Wang CH, Quijano-Roy S, Deconinck N, Bertini E, Ferreiro A, et al. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 2014; 24: 289-311.
https://doi.org/10.1016/j.nmd.2013.12.011
Rodríguez Cruz PM, Luo YB, Miller J, Junckerstorff RC, Mastaglia FL, Fabian V. An analysis of the sensitivity and specificity of MHC-I and MHC-II immunohistochemical staining in muscle biopsies for the diagnosis of inflammatory myopathies. Neuromuscul Disord 2014; Jun 30 [Epub ahead of print].
https://doi.org/10.1016/j.nmd.2014.06.436
Lang T, Laver N, Strominger MB, Witking A, Pfannl R, Alroy J. Morphological findings of extraocular myopathy with chronic progressive external ophthalmoplegia. Ultrastruct Pathol 2010; 34: 78-81.
https://doi.org/10.3109/01913121003624684
Goebel HH, Stenzel W. Practical Application of Electron Microscopy to Neuromuscular Diseases. Ultrastruct Pathol 2013; 37: 15-18.