Metabolismo mineral y óseo: visión general y sus métodos de medición

  • Lina M. Restrepo-Giraldo Laboratorio Clínico Hematológico, Fundación Antonio Prudente
  • Joel Arévalo-Novoa Fundación Antonio Prudente
  • Martín Toro-Ramos Universidad de Antioquia
Palabras clave: calcio, fósforo, metabolismo, remodelación ósea, resorción ósea, hormona paratiroidea, calcitonina, vitamina D, fosfatoninas.

Resumen

Las concentraciones plasmáticas de calcio, fósforo y magnesio dependen del balance neto del depósito mineral óseo y su resorción, la absorción intestinal y la excreción renal. Estos iones son importantes para muchas funciones biológicas y celulares como la señalización intracelular, la transmisión neural y la contracción muscular. Las principales hormonas que regulan la homeostasis de estos procesos son la hormona paratiroidea (PTH), la calcitonina, la 1,25-dihidroxi vitamina D y el factor de crecimiento fibroblástico-23 (FGF- 23). A través de sus acciones e interacciones sobre el hueso, el riñón y el tracto gastrointestinal las hormonas calciotrópicas (la hormona paratiroidea, la calcitonina y los metabolitos de la vitamina D, especialmente la 1,25-dihidroxi vitamina D) actúan para mantener la calcemia dentro de un rango normal, lo que permite el funcionamiento óptimo de muchos procesos fisiológicos dependientes de calcio. Los avances en las técnicas de análisis de los diferentes componentes del metabolismo mineral y óseo son útiles en la comprensión de su papel en la salud y la enfermedad. En este artículo se ofrece una revisión de los aspectos fisiológicos, clínicos y analíticos de estos protagonistas en el metabolismo óseo y mineral.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Lina M. Restrepo-Giraldo, Laboratorio Clínico Hematológico, Fundación Antonio Prudente

Médica, especialista en Medicina Interna y Endocrinología Clínica y Metabolismo. Endocrinóloga Clínica Medellín y Laboratorio Clínico Hematológico. Docente asociada Universidad CES. Medellín, Colombia. Estudiante de MSc en Oncología, Fundación Antonio Prudente, Hospital A.C. Camargo Cancer Center. São Paulo, Brasil.

Joel Arévalo-Novoa, Fundación Antonio Prudente

Médico, especialista en Cirugía General. Residente de Cirugía de Cabeza y Cuello, Fundación Antonio Prudente, Hospital A.C. Camargo Cancer Center. São Paulo, Brasil.

Martín Toro-Ramos, Universidad de Antioquia

Médico, especialista en Pediatría y Endocrinología Pediátrica. Endocrinólogo IPS Universitaria y Sura EPS. Docente de cátedra Universidad de Antioquia. Medellín, Colombia.

Referencias bibliográficas

Boden SD, Kaplan FS. Calcium homeostasis. Orthop Clin North Am 1990; 21: 31-42.

Watts NB. Clinical utility of biochemical markers of bone remodeling. Clin Chem 1999; 45: 1359-1368.

Endres DB, Rude RK. Mineral and Bone Metabolism. En: Burtis CA, Ashwood ER, eds. Tietz Textbook of Clinical Chemistry (ed 3ra). Filadelfia, Estados Unidos: Saunders; 1999: 1395-1457.

Calvo MS, Eyre DR, Gundberg CM. Molecular basis and clinical application of biological markers of bone turnover. Endocr Rev 1996; 17: 333-368.

https://doi.org/10.1210/edrv-17-4-333

Plotkin LI, Bellido T. Osteocytic signalling pathways as therapeutic targets for bone fragility. Nat Rev Endocrinol 2016; May 27 [Epub ahead of print].

https://doi.org/10.1038/nrendo.2016.126

Richard M, Matthew P. Henry's Clinical Diagnosis and Management by Laboratory Methods (ed 23a): Elsevier; 2016.

Mundy GR, Guise TA. Hormonal control of calcium homeostasis. Clin Chem 1999; 45: 1347-1352.

Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem 1987; 56: 395-433.

https://doi.org/10.1146/annurev.bi.56.070187.002143

Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A 1999; 96: 3540-3545.

https://doi.org/10.1073/pnas.96.7.3540

Payne RB, Little AJ, Williams RB, Milner JR. Interpretation of serum calcium in patients with abnormal serum proteins. Br Med J 1973; 4: 643-646.

https://doi.org/10.1136/bmj.4.5893.643

Hristova EN, Cecco S, Niemela JE, Rehak NN, Elin RJ. Analyzer-dependent differences in results for ionized calcium, ionized magnesium, sodium, and pH. Clin Chem 1995; 41: 1649-1653.

Wang S, McDonnell EH, Sedor FA, Toffaletti JG. pH effects on measurements of ionized calcium and ionized magnesium in blood. Arch Pathol Lab Med 2002; 126: 947-950.

Weisinger JR, Bellorin-Font E. Magnesium and phosphorus. Lancet 1998; 352: 391-396.

https://doi.org/10.1016/S0140-6736(97)10535-9

Bellorin-Font E, Starosta R, Milanes CL, Lopez C, Pernalete N, Weisinger J, et al. Effect of acidosis on PTH-dependent renal adenylate cyclase in phosphorus deprivation: role of G proteins. Am J Physiol 1990; 258: F1640-1649.

https://doi.org/10.1152/ajprenal.1990.258.6.F1640

Liu S, Quarles LD. How fibroblast growth factor 23 works. J Am Soc Nephrol 2007; 18: 1637-1647.

https://doi.org/10.1681/ASN.2007010068

Quarles LD. FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization. Am J Physiol Endocrinol Metab 2003; 285: E1-9.

https://doi.org/10.1152/ajpendo.00016.2003

Quarles LD. Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. Exp Cell Res 2012; 318: 1040-1048.

https://doi.org/10.1016/j.yexcr.2012.02.027

Daly JA, Ertingshausen G. Direct method for determining inorganic phosphate in serum with the "CentrifiChem". Clin Chem 1972; 18: 263-265.

Elin RJ. Magnesium metabolism in health and disease. Dis Mon 1988; 34: 161-218.

https://doi.org/10.1016/0011-5029(88)90013-2

Quamme GA. Control of magnesium transport in the thick ascending limb. Am J Physiol 1989; 256: F197-210.

https://doi.org/10.1152/ajprenal.1989.256.2.F197

Quamme GA. Renal magnesium handling: new insights in understanding old problems. Kidney Int 1997; 52: 1180-1195.

https://doi.org/10.1038/ki.1997.443

Papazachariou IM, Martinez-Isla A, Efthimiou E, Williamson RC, Girgis SI. Magnesium deficiency in patients with chronic pancreatitis identified by an intravenous loading test. Clin Chim Acta 2000; 302: 145-154.

https://doi.org/10.1016/S0009-8981(00)00363-6

Huijgen HJ, Sanders R, Cecco SA, Rehak NN, Sanders GT, Elin RJ. Serum ionized magnesium: comparison of results obtained with three ion-selective analyzers. Clin Chem Lab Med 1999; 37: 465-470.

https://doi.org/10.1515/CCLM.1999.075

Cecco SA, Hristova EN, Rehak NN, Elin RJ. Clinically important intermethod differences for physiologically abnormal ionized magnesium results. Am J Clin Pathol 1997; 108: 564-569.

https://doi.org/10.1093/ajcp/108.5.564

Fritchie K, Zedek D, Grenache DG. The clinical utility of parathyroid hormone-related peptide in the assessment of hypercalcemia. Clin Chim Acta 2009; 402: 146-149.

https://doi.org/10.1016/j.cca.2008.12.040

D'Amour P, Brossard JH, Rousseau L, Roy L, Gao P, Cantor T. Amino-terminal form of parathyroid hormone (PTH) with immunologic similarities to hPTH(1-84) is overproduced in primary and secondary hyperparathyroidism. Clin Chem 2003; 49: 2037-2044.

https://doi.org/10.1373/clinchem.2003.021592

D'Amour P, Brossard JH, Rakel A, Rousseau L, Albert C, Cantor T. Evidence that the amino-terminal composition of non-(1-84) parathyroid hormone fragments starts before position 19. Clin Chem 2005; 51: 169-176.

https://doi.org/10.1373/clinchem.2004.040485

Sempos CT, Vesper HW, Phinney KW, Thienpont LM, Coates PM. Vitamin D status as an international issue: national surveys and the problem of standardization. Scand J Clin Lab Invest Suppl 2012; 243: 32-40.

Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357: 266-281.

https://doi.org/10.1056/NEJMra070553

Vieth R. What is the optimal vitamin D status for health? Prog Biophys Mol Biol 2006; 92: 26-32.

https://doi.org/10.1016/j.pbiomolbio.2006.02.003

Lips P, Netelenbos JC, van Doorn L, Hackeng WH, Lips CJ. Stimulation and suppression of intact parathyroid hormone (PTH1-84) in normal subjects and hyperparathyroid patients. Clin Endocrinol (Oxf) 1991; 35: 35-40.

https://doi.org/10.1111/j.1365-2265.1991.tb03493.x

Jubiz W, Canterbury JM, Reiss E, Tyler FH. Circadian rhythm in serum parathyroid hormone concentration in human subjects: correlation with serum calcium, phosphate, albumin, and growth hormone levels. J Clin Invest 1972; 51: 2040-2046.

https://doi.org/10.1172/JCI107010

Honma M, Ikebuchi Y, Kariya Y, Suzuki H. Regulatory mechanisms of RANKL presentation to osteoclast precursors. Curr Osteoporos Rep 2014; 12: 115-120.

https://doi.org/10.1007/s11914-014-0189-0

Bastepe M, Raas-Rothschild A, Silver J, Weissman I, Wientroub S, Juppner H, et al. A form of Jansen's metaphyseal chondrodysplasia with limited metabolic and skeletal abnormalities is caused by a novel activating parathyroid hormone (PTH)/PTH-related peptide receptor mutation. J Clin Endocrinol Metab 2004; 89: 3595-3600.

https://doi.org/10.1210/jc.2004-0036

Nichols Advantage. BIO-INTACT PTH assay directional insert. ADS Document 7040. 2004.

Goodman WG, Juppner H, Salusky IB, Sherrard DJ. Parathyroid hormone (PTH), PTH-derived peptides, and new PTH assays in renal osteodystrophy. Kidney Int 2003; 63: 1-11.

https://doi.org/10.1046/j.1523-1755.2003.00700.x

Cano Sch F, Jara C A. La Osteodistrofia Renal y la Paratohormona supresora de la remodelación ósea. Rev Chil Pediatr 2006; 77: 127-137.

https://doi.org/10.4067/S0370-41062006000200002

Nussbaum SR, Zahradnik RJ, Lavigne JR, Brennan GL, Nozawa-Ung K, Kim LY, et al. Highly sensitive two-site immunoradiometric assay of parathyrin, and its clinical utility in evaluating patients with hypercalcemia. Clin Chem 1987; 33: 1364-1367.

Martin KJ, Akhtar I, Gonzalez EA. Parathyroid hormone: new assays, new receptors. Semin Nephrol 2004; 24: 3-9.

https://doi.org/10.1053/j.semnephrol.2003.08.019

Hecking M, Kainz A, Bielesz B, Plischke M, Beilhack G, Horl WH, et al. Clinical evaluation of two novel biointact PTH(1-84) assays in hemodialysis patients. Clin Biochem 2012; 45: 1645-1651.

https://doi.org/10.1016/j.clinbiochem.2012.08.006

Wood PJ. The measurement of parathyroid hormone. Ann Clin Biochem 1992; 29 ( Pt 1): 11-21.

John MR, Goodman WG, Gao P, Cantor TL, Salusky IB, Juppner H. A novel immunoradiometric assay detects full-length human PTH but not amino-terminally truncated fragments: implications for PTH measurements in renal failure. J Clin Endocrinol Metab 1999; 84: 4287-4290.

https://doi.org/10.1210/jcem.84.11.6236

Brossard JH, Cloutier M, Roy L, Lepage R, Gascon-Barre M, D'Amour P. Accumulation of a non-(1-84) molecular form of parathyroid hormone (PTH) detected by intact PTH assay in renal failure: importance in the interpretation of PTH values. J Clin Endocrinol Metab 1996; 81: 3923-3929.

https://doi.org/10.1210/jcem.81.11.8923839

Lepage R, Roy L, Brossard JH, Rousseau L, Dorais C, Lazure C, et al. A non-(1-84) circulating parathyroid hormone (PTH) fragment interferes significantly with intact PTH commercial assay measurements in uremic samples. Clin Chem 1998; 44: 805-809.

Brossard JH, Lepage R, Cardinal H, Roy L, Rousseau L, Dorais C, et al. Influence of glomerular filtration rate on non-(1-84) parathyroid hormone (PTH) detected by intact PTH assays. Clin Chem 2000; 46: 697-703.

Divieti P, John MR, Juppner H, Bringhurst FR. Human PTH-(7-84) inhibits bone resorption in vitro via actions independent of the type 1 PTH/PTHrP receptor. Endocrinology 2002; 143: 171-176.

https://doi.org/10.1210/endo.143.1.8575

Nguyen-Yamamoto L, Rousseau L, Brossard JH, Lepage R, D'Amour P. Synthetic carboxyl-terminal fragments of parathyroid hormone (PTH) decrease ionized calcium concentration in rats by acting on a receptor different from the PTH/PTH-related peptide receptor. Endocrinology 2001; 142: 1386-1392.

https://doi.org/10.1210/endo.142.4.8093

Wesseling-Perry K, Harkins GC, Wang HJ, Elashoff R, Gales B, Horwitz MJ, et al. The calcemic response to continuous parathyroid hormone (PTH)(1-34) infusion in end-stage kidney disease varies according to bone turnover: a potential role for PTH(7-84). J Clin Endocrinol Metab 2010; 95: 2772-2780.

https://doi.org/10.1210/jc.2009-1909

Gao P, Scheibel S, D'Amour P, John MR, Rao SD, Schmidt-Gayk H, et al. Development of a novel immunoradiometric assay exclusively for biologically active whole parathyroid hormone 1-84: implications for improvement of accurate assessment of parathyroid function. J Bone Miner Res 2001; 16: 605-614.

https://doi.org/10.1359/jbmr.2001.16.4.605

Slatopolsky E, Finch J, Clay P, Martin D, Sicard G, Singer G, et al. A novel mechanism for skeletal resistance in uremia. Kidney Int 2000; 58: 753-761.

https://doi.org/10.1016/S0085-2538(15)47156-X

Salusky IB, Goodman WG, Kuizon BD, Lavigne JR, Zahranik RJ, Gales B, et al. Similar predictive value of bone turnover using first- and second-generation immunometric PTH assays in pediatric patients treated with peritoneal dialysis. Kidney Int 2003; 63: 1801-1808.

https://doi.org/10.1046/j.1523-1755.2003.00915.x

Au AY, McDonald K, Gill A, Sywak M, Diamond T, Conigrave AD, et al. PTH mutation with primary hyperparathyroidism and undetectable intact PTH. N Engl J Med 2008; 359: 1184-1186.

https://doi.org/10.1056/NEJMc0802570

Hocher B, Armbruster FP, Stoeva S, Reichetzeder C, Gron HJ, Lieker I, et al. Measuring parathyroid hormone (PTH) in patients with oxidative stress--do we need a fourth generation parathyroid hormone assay? PLoS One 2012; 7: e40242.

https://doi.org/10.1371/journal.pone.0040242

Hocher B, Oberthur D, Slowinski T, Querfeld U, Schaefer F, Doyon A, et al. Modeling of oxidized PTH (oxPTH) and non-oxidized PTH (n-oxPTH) receptor binding and relationship of oxidized to non-oxidized PTH in children with chronic renal failure, adult patients on hemodialysis and kidney transplant recipients. Kidney Blood Press Res 2013; 37: 240-251.

https://doi.org/10.1159/000350149

Silverberg SJ, Gao P, Brown I, LoGerfo P, Cantor TL, Bilezikian JP. Clinical utility of an immunoradiometric assay for parathyroid hormone (1-84) in primary hyperparathyroidism. J Clin Endocrinol Metab 2003; 88: 4725-4730.

https://doi.org/10.1210/jc.2002-021266

Tepel M, Armbruster FP, Gron HJ, Scholze A, Reichetzeder C, Roth HJ, et al. Nonoxidized, biologically active parathyroid hormone determines mortality in hemodialysis patients. J Clin Endocrinol Metab 2013; 98: 4744-4751.

https://doi.org/10.1210/jc.2013-2139

Cioffi M, Corradino M, Gazzerro P, Vietri MT, Di Macchia C, Contursi A, et al. Serum concentrations of intact parathyroid hormone in healthy children. Clin Chem 2000; 46: 863-864.

Souberbielle JC, Massart C, Brailly-Tabard S, Cormier C, Cavalier E, Delanaye P, et al. Serum PTH reference values established by an automated third-generation assay in vitamin D-replete subjects with normal renal function: consequences of diagnosing primary hyperparathyroidism and the classification of dialysis patients. Eur J Endocrinol 2016; 174: 315-323.

https://doi.org/10.1530/EJE-15-0595

Bikle DD, Stesin A, Halloran B, Steinbach L, Recker R. Alcohol-induced bone disease: relationship to age and parathyroid hormone levels. Alcohol Clin Exp Res 1993; 17: 690-695.

https://doi.org/10.1111/j.1530-0277.1993.tb00821.x

Lindholm J, Steiniche T, Rasmussen E, Thamsborg G, Nielsen IO, Brockstedt-Rasmussen H, et al. Bone disorder in men with chronic alcoholism: a reversible disease? J Clin Endocrinol Metab 1991; 73: 118-124.

https://doi.org/10.1210/jcem-73-1-118

Specker BL, Tsang RC, Ho ML. Changes in calcium homeostasis over the first year postpartum: effect of lactation and weaning. Obstet Gynecol 1991; 78: 56-62.

Cavalier E, Carlisi A, Chapelle JP, Delanaye P. False positive PTH results: an easy strategy to test and detect analytical interferences in routine practice. Clin Chim Acta 2008; 387: 150-152.

https://doi.org/10.1016/j.cca.2007.08.019

Goldstein RE, Blevins L, Delbeke D, Martin WH. Effect of minimally invasive radioguided parathyroidectomy on efficacy, length of stay, and costs in the management of primary hyperparathyroidism. Ann Surg 2000; 231: 732-742.

https://doi.org/10.1097/00000658-200005000-00014

Bilezikian JP, Cusano NE, Khan AA, Liu JM, Marcocci C, Bandeira F. Primary hyperparathyroidism. Nat Rev Dis Primers 2016; 2: 16033.

https://doi.org/10.1038/nrdp.2016.33

Sokoll LJ, Drew H, Udelsman R. Intraoperative parathyroid hormone analysis: A study of 200 consecutive cases. Clin Chem 2000; 46: 1662-1668.

Tan K, Ong L, Sethi SK, Saw S. Comparison of the Elecsys PTH(1-84) assay with four contemporary second generation intact PTH assays and association with other biomarkers in chronic kidney disease patients. Clin Biochem 2013; 46: 781-786.

https://doi.org/10.1016/j.clinbiochem.2013.01.016

Joly D, Drueke TB, Alberti C, Houillier P, Lawson-Body E, Martin KJ, et al. Variation in serum and plasma PTH levels in second-generation assays in hemodialysis patients: a cross-sectional study. Am J Kidney Dis 2008; 51: 987-995.

https://doi.org/10.1053/j.ajkd.2008.01.017

Levin O, Morris LF, Wah DT, Butch AW, Yeh MW. Falsely elevated plasma parathyroid hormone level mimicking tertiary hyperparathyroidism. Endocr Pract 2011; 17: e8-11.

https://doi.org/10.4158/EP10235.CR

Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, et al. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 1999; 103: 197-206.

https://doi.org/10.1172/JCI3523

Care AD, Bruce JB, Boelkins J, Kenny AD, Conaway H, Anast CS. Role of pancreozymin-cholecystokinin and structurally related compounds as calcitonin secretogogues. Endocrinology 1971; 89: 262-271.

https://doi.org/10.1210/endo-89-1-262

Berson SA, Yalow RS, Aurbach GD, Potts JT. Immunoassay of Bovine and Human Parathyroid Hormone. Proc Natl Acad Sci U S A 1963; 49: 613-617.

https://doi.org/10.1073/pnas.49.5.613

Masi L, Brandi ML. Calcitonin and calcitonin receptors. Clin Cases Miner Bone Metab 2007; 4: 117-122.

Cianferotti L, Marcocci C. Subclinical vitamin D deficiency. Best Pract Res Clin Endocrinol Metab 2012; 26: 523-537.

https://doi.org/10.1016/j.beem.2011.12.007

Papapoulos SE, Clemens TL, Sandler LM, Fraher LJ, Winer J, O'Riordan JL. The effect of renal function on changes in circulating concentrations of 1,25-dihydroxycholecalciferol after an oral dose. Clin Sci (Lond) 1982; 62: 427-429.

https://doi.org/10.1042/cs0620427

Mithal A, Wahl DA, Bonjour JP, Burckhardt P, Dawson-Hughes B, Eisman JA, et al. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int 2009; 20: 1807-1820.

https://doi.org/10.1007/s00198-009-0954-6

Yetley EA. Assessing the vitamin D status of the US population. Am J Clin Nutr 2008; 88: 558S-564S.

https://doi.org/10.1093/ajcn/88.2.558S

Forrest KY, Stuhldreher WL. Prevalence and correlates of vitamin D deficiency in US adults. Nutr Res 2011; 31: 48-54.

https://doi.org/10.1016/j.nutres.2010.12.001

Schiavi SC, Kumar R. The phosphatonin pathway: new insights in phosphate homeostasis. Kidney Int 2004; 65: 1-14.

https://doi.org/10.1111/j.1523-1755.2004.00355.x

Silver J, Naveh-Many T. FGF-23 and secondary hyperparathyroidism in chronic kidney disease. Nat Rev Nephrol 2013; 9: 641-649.

https://doi.org/10.1038/nrneph.2013.147

Kida Y. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 2003; 349: 505-506; author reply 505-506.

https://doi.org/10.1056/NEJM200307313490517

Fukumoto S. Diagnostic Modalities for FGF23-Producing Tumors in Patients with Tumor-Induced Osteomalacia. Endocrinol Metab (Seoul) 2014; 29: 136-143.

https://doi.org/10.3803/EnM.2014.29.2.136

Araya K, Fukumoto S, Backenroth R, Takeuchi Y, Nakayama K, Ito N, et al. A novel mutation in fibroblast growth factor 23 gene as a cause of tumoral calcinosis. J Clin Endocrinol Metab 2005; 90: 5523-5527.

https://doi.org/10.1210/jc.2005-0301

Roetzer KM, Varga F, Zwettler E, Nawrot-Wawrzyniak K, Haller J, Forster E, et al. Novel PHEX mutation associated with hypophosphatemic rickets. Nephron Physiol 2007; 106: p8-12.

https://doi.org/10.1159/000101487

Ichikawa S, Traxler EA, Estwick SA, Curry LR, Johnson ML, Sorenson AH, et al. Mutational survey of the PHEX gene in patients with X-linked hypophosphatemic rickets. Bone 2008; 43: 663-666.

https://doi.org/10.1016/j.bone.2008.06.002

Masi L, Gozzini A, Franchi A, Campanacci D, Amedei A, Falchetti A, et al. A novel recessive mutation of fibroblast growth factor-23 in tumoral calcinosis. J Bone Joint Surg Am 2009; 91: 1190-1198.

https://doi.org/10.2106/JBJS.H.00783

Bahrami A, Weiss SW, Montgomery E, Horvai AE, Jin L, Inwards CY, et al. RT-PCR analysis for FGF23 using paraffin sections in the diagnosis of phosphaturic mesenchymal tumors with and without known tumor induced osteomalacia. Am J Surg Pathol 2009; 33: 1348-1354.

https://doi.org/10.1097/PAS.0b013e3181aa2311

Wesseling-Perry K. FGF23: is it ready for prime time? Clin Chem 2011; 57: 1476-1477.

https://doi.org/10.1373/clinchem.2011.172890

Cómo citar
1.
Restrepo-Giraldo LM, Arévalo-Novoa J, Toro-Ramos M. Metabolismo mineral y óseo: visión general y sus métodos de medición. Med. Lab. [Internet]. 1 de noviembre de 2015 [citado 17 de octubre de 2021];21(11-12):511-38. Disponible en: https://medicinaylaboratorio.com/index.php/myl/article/view/146
Publicado
2015-11-01
Sección
La Clínica y el Laboratorio