Microquimerismos en la enfermedad de Alzheimer y la demencia frontotemporal

  • Sara Sierra-Peláez Universidad de Antioquia
  • Carlos A. Villegas-Lanau Universidad de Antioquia
Palabras clave: enfermedades neurodegenerativas, enfermedad de Alzheimer, demencia frontotemporal, microquimerismo, complejo mayor de histocompatibilidad.

Resumen

Las enfermedades neurodegenerativas constituyen un problema global de salud pública que tiende a incrementarse. En la búsqueda de alternativas terapéuticas frente a estas afecciones aparecen los microquimerismos fetomaternales (células fetales en estados inmaduros de diferenciación adquiridas durante el embarazo) que, al tratarse de células madre, suponen una opción terapéutica similar a la terapia celular. Estudios recientes han demostrado el papel protector de los microquimerismos en la enfermedad de Alzheimer y la esclerosis múltiple; sin embargo, al tratarse de células provenientes de otro organismo surge la posibilidad de que induzcan una respuesta inmune que lleve a la aparición o potenciación de los procesos inflamatorios propios de las enfermedades neurodegenerativas. De acuerdo con lo anterior, diversos estudios han sugerido un papel de los microquimerismos en el desarrollo de enfermedades autoinmunes. El esclarecimiento de las características, funciones, vías de ingreso, localización e interacciones de los microquimerismos con el sistema inmune del organismo hospedero es relevante en la medida en que pueden guiar el desarrollo de tratamientos frente a este tipo de enfermedades. En esta revisión se describen algunos de estos aspectos relevantes.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Sara Sierra-Peláez, Universidad de Antioquia

Psicóloga, estudiante de maestría en Ciencias Básicas Biomédicas, Universidad de Antioquia. Laboratorio de Genética Molecular. Medellín, Colombia.

Carlos A. Villegas-Lanau , Universidad de Antioquia

Médico, MSc en Ciencias Básicas Biomédicas, MSc en Neurociencias, PhD en Ciencias. Grupo de Neurociencias de la Universidad de Antioquia. Medellín, Colombia.

Referencias bibliográficas

Lindvall O, Kokaia Z. Stem cells in human neurodegenerative disorders--time for clinical translation? J Clin Invest 2010; 120: 29-40.

https://doi.org/10.1172/JCI40543

Alzheimer's Association. 2013 Alzheimer's disease facts and figures. Alzheimers Dement 2013; 9: 208-245.

https://doi.org/10.1016/j.jalz.2013.02.003

Modig K, Drefahl S, Ahlbom A. Limitless longevity: comment on the Contribution of rectangularization to the secular increase of life expectancy. Int J Epidemiol 2013; 42: 914-916.

https://doi.org/10.1093/ije/dyt035

Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 2014; 88: 640-651.

https://doi.org/10.1016/j.bcp.2013.12.024

Camps Calzadilla E, Gámez Fonseca M, Borroto M, Prado Martínez C. Evaluación nutricional de los centenarios cubanos y su relación con biomarcadores del envejecimiento. Rev Cubana Invest Bioméd 2013; 32: 57-64.

Onyike CU, Diehl-Schmid J. The epidemiology of frontotemporal dementia. Int Rev Psychiatry 2013; 25: 130-137.

https://doi.org/10.3109/09540261.2013.776523

Galimberti D, Dell'Osso B, Altamura AC, Scarpini E. Psychiatric Symptoms in Frontotemporal Dementia: Epidemiology, Phenotypes, and Differential Diagnosis. Biol Psychiatry 2015; Abr 8 [Epub ahead of print].

https://doi.org/10.1016/j.biopsych.2015.03.028

Boddy AM, Fortunato A, Wilson Sayres M, Aktipis A. Fetal microchimerism and maternal health: a review and evolutionary analysis of cooperation and conflict beyond the womb. Bioessays 2015; Ago 28 [Epub ahead of print].

https://doi.org/10.1002/bies.201500059

Nelson JL. The otherness of self: microchimerism in health and disease. Trends Immunol 2012; 33: 421-427.

https://doi.org/10.1016/j.it.2012.03.002

Boyon C, Collinet P, Boulanger L, Rubod C, Lucot JP, Vinatier D. Fetal microchimerism: benevolence or malevolence for the mother? Eur J Obstet Gynecol Reprod Biol 2011; 158: 148-152.

https://doi.org/10.1016/j.ejogrb.2011.05.008

Chan WF, Gurnot C, Montine TJ, Sonnen JA, Guthrie KA, Nelson JL. Male microchimerism in the human female brain. PLoS One 2012; 7: e45592.

https://doi.org/10.1371/journal.pone.0045592

Kim SU, Lee HJ, Kim YB. Neural stem cell-based treatment for neurodegenerative diseases. Neuropathology 2013; 33: 491-504.

https://doi.org/10.1111/neup.12020

Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature 2012; 481: 295-305.

https://doi.org/10.1038/nature10761

Hsieh JY, Wang HW, Chang SJ, Liao KH, Lee IH, Lin WS, et al. Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS One 2013; 8: e72604.

https://doi.org/10.1371/journal.pone.0072604

Dawe GS, Tan XW, Xiao ZC. Cell migration from baby to mother. Cell Adh Migr 2007; 1: 19-27.

https://doi.org/10.4161/cam.4082

Tan XW, Liao H, Sun L, Okabe M, Xiao ZC, Dawe GS. Fetal microchimerism in the maternal mouse brain: a novel population of fetal progenitor or stem cells able to cross the blood-brain barrier? Stem Cells 2005; 23: 1443-1452.

https://doi.org/10.1634/stemcells.2004-0169

Mezey E, Brownstein MJ. Do circulating cells transdifferentiate and replenish stem cell pools in the brain and periphery? Bioessays 2015; 37: 398-402.

https://doi.org/10.1002/bies.201400199

Velázquez FN, Caputto BL. Aspectos generales de las células madre y su potencial aplicación en la medicina regenerativa. Bitácora Digital 2013; 1: 1-6.

Khosrotehrani K, Leduc M, Bachy V, Nguyen Huu S, Oster M, Abbas A, et al. Pregnancy allows the transfer and differentiation of fetal lymphoid progenitors into functional T and B cells in mothers. J Immunol 2008; 180: 889-897.

https://doi.org/10.4049/jimmunol.180.2.889

Bongso A, Fong CY. The therapeutic potential, challenges and future clinical directions of stem cells from the Wharton's jelly of the human umbilical cord. Stem Cell Rev 2013; 9: 226-240.

https://doi.org/10.1007/s12015-012-9418-z

Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Narva E, et al. Copy number variation and selection during reprogramming to pluripotency. Nature 2011; 471: 58-62.

https://doi.org/10.1038/nature09871

King NM, Perrin J. Ethical issues in stem cell research and therapy. Stem Cell Res Ther 2014; 5: 85.

https://doi.org/10.1186/scrt474

Andorno R. La dimensión biológica de la personalidad humana: El debate sobre el estatuto del embrión. Cuad Bioét 2004; 1: 29-36.

Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 2013; 19: 998-1004.

https://doi.org/10.1038/nm.3267

Kuroda T, Yasuda S, Sato Y. Tumorigenicity Studies for Human Pluripotent Stem Cell-Derived Products. Biol Pharm Bull 2013; 36: 189-192.

https://doi.org/10.1248/bpb.b12-00970

Jin HJ, Bae YK, Kim M, Kwon SJ, Jeon HB, Choi SJ, et al. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci 2013; 14: 17986-18001.

https://doi.org/10.3390/ijms140917986

Snell RS. Sistema ventricular, el líquido cefalorraquídeo y barreras hematoencefálicas y hematorraquídea. In: Snell RS ed. Neuroanatomía Clínica (ed 5a). Buenos Aires, Argentina: Editorial Médica Panamericana; 2003: 443-472.

Mezey É, Key S, Vogelsang G, Szalayova I, Lange GD, Crain B. Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci USA 2003; 100: 1364-1369.

https://doi.org/10.1073/pnas.0336479100

Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011; 476: 214-219.

https://doi.org/10.1038/nature10251

Nijagal A, Wegorzewska M, Jarvis E, Le T, Tang Q, MacKenzie TC. Maternal T cells limit engraftment after in utero hematopoietic cell transplantation in mice. J Clin Invest 2011; 121: 582-592.

https://doi.org/10.1172/JCI44907

Leveque L, Khosrotehrani K. Feto-maternal allo-immunity, regulatory T cells and predisposition to auto-immunity. Does it all start in utero? Chimerism 2014; 5: 59-62.

https://doi.org/10.4161/chim.29844

Garavito G, Iglesias A, Egea E, Jaraquemada D, Martínez P, Egea EE. Una aproximación al significado biológico del polimorfismo del Complejo Mayor de Histocompatibilidad. El modelo de la asociación HLA y ARJ*. Salud Uninorte Barranquilla (Col) 2002; 16: 53-72.

Montano-Frías JE, Rocha-Olivares A, Licea-Navarro AF, Morteo-Ortiz E, Segura-García I, Heckel G. Polimorfismo del gen DQB del complejo principal de histocompatibilidad clase II como bio-indicador en tursiones Tursiops truncatus del Golfo de México y Mar Caribe. Veracruz, México: XXXII Reunión Internacional para el Estudio de los Mamíferos Marinos, 2-6 de mayo. Sociedad Mexicana de Mastozoología Marina (SOMEMMA). 2010.

Abbas AK, Lichtman AH, Pillai S. Transplantation Immunology. En: Abbas AK, Lichtman AH, Pillai S, eds. Cellular and Molecular Immunology (ed 7a). Filadelfia, Estados Unidos: Elsevier Saunders; 2012: 365-388.

Lambert NC. Multiple ways human leukocyte antigens (HLA) could influence chimerism. Chimerism 2013; 4: 41.

Kekow M, Barleben M, Drynda S, Jakubiczka S, Kekow J, Brune T. Long-term persistence and effects of fetal microchimerisms on disease onset and status in a cohort of women with rheumatoid arthritis and systemic lupus erythematosus. BMC Musculoskelet Disord 2013; 14: 1-8.

https://doi.org/10.1186/1471-2474-14-325

Irie N. Emerging Questions in Materno-Fetal Microchimerism. Reproductive Sys Sexual Disord 2011; S1: 002.

https://doi.org/10.4172/2161-038X.S1-002

Mold JE, Michaelsson J, Burt TD, Muench MO, Beckerman KP, Busch MP, et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 2008; 322: 1562-1565.

https://doi.org/10.1126/science.1164511

Gammill HS, Aydelotte TM, Guthrie KA, Nkwopara EC, Nelson JL. Cellular fetal microchimerism in preeclampsia. Hypertension 2013; 62: 1062-1067.

https://doi.org/10.1161/HYPERTENSIONAHA.113.01486

Eun JK, Guthrie KA, Zirpoli G, Gadi VK. In situ breast cancer and microchimerism. Sci Rep 2013; 3: 2192.

https://doi.org/10.1038/srep02192

Cirello V, Colombo C, Perrino M, De Leo S, Muzza M, Maffini MA, et al. Fetal cell microchimerism in papillary thyroid cancer: A role in the outcome of the disease. Int J Cancer 2015; 137: 2989-2993.

https://doi.org/10.1002/ijc.29653

Alberca Serrano R, López-Pousa S. Enfermedad de Alzheimer y otras Demencias (ed 4ta). Madrid, España: Editorial Médica Panamericana; 2011.

Morrison J. DSM-5® Guía para el diagnóstico clínico. México D.F., México: Editotial El Manual Moderno; 2015.

Kolb B, Whishaw IQ. La memoria. En: Kolb B, Whishaw IQ, eds. Neuropsicología humana (ed 5ta). Madrid, España: Editorial Médica Panamericana; 2006: 447-482.

Ringman JM, Coppola G. New genes and new insights from old genes: update on Alzheimer disease. Continuum (Minneap Minn) 2013; 19: 358-371.

https://doi.org/10.1212/01.CON.0000429179.21977.a1

Colucci M, Cammarata S, Assini A, Croce R, Clerici F, Novello C, et al. The number of pregnancies is a risk factor for Alzheimer's disease. Eur J Neurol 2006; 13: 1374-1377.

https://doi.org/10.1111/j.1468-1331.2006.01520.x

Shansky RM. Sex Differences in the Central Nervous System. Londres, Reino Unido: Academic Press; 2015.

Corbo RM, Ulizzi L, Scacchi R, Martinez-Labarga C, De Stefano GF. Apolipoprotein E polymorphism and fertility: a study in pre-industrial populations. Mol Hum Reprod 2004; 10: 617-620.

https://doi.org/10.1093/molehr/gah082

Wyss-Coray T, Rogers J. Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2012; 2: a006346.

https://doi.org/10.1101/cshperspect.a006346

Lopategui Cabezas I, Herrera Batista A, Pentón Rol G. Papel de la glía en la enfermedad de Alzheimer. Futuras implicaciones terapéuticas. Neurología 2014; 29: 305-309.

https://doi.org/10.1016/j.nrl.2012.10.006

Vinet J, Weering HR, Heinrich A, Kalin RE, Wegner A, Brouwer N, et al. Neuroprotective function for ramified microglia in hippocampal excitotoxicity. J Neuroinflammation 2012; 9: 27.

https://doi.org/10.1186/1742-2094-9-27

Graeber MB, Streit WJ. Microglia: biology and pathology. Acta Neuropathol 2010; 119: 89-105.

https://doi.org/10.1007/s00401-009-0622-0

Riedl L, Mackenzie IR, Forstl H, Kurz A, Diehl-Schmid J. Frontotemporal lobar degeneration: current perspectives. Neuropsychiatr Dis Treat 2014; 10: 297-310.

https://doi.org/10.2147/NDT.S38706

Flores Lázaro JC, Ostrosky-Shejet F, Lozano Gutiérrez A. Batería de Funciones Ejecutivas: Presentación. Rev Neuropsi Neuropsiq Neuroc 2008; 8: 141-158.

Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Grossman M, et al. Reply: Considering the frontomedian cortex in revised criteria for behavioural variant frontotemporal dementia. Brain 2012; 135: e214-e214.

https://doi.org/10.1093/brain/aws031

Whitwell JL, Weigand SD, Boeve BF, Senjem ML, Gunter JL, DeJesus-Hernandez M, et al. Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics. Brain 2012; 135: 794-806.

https://doi.org/10.1093/brain/aws001

Yin F, Banerjee R, Thomas B, Zhou P, Qian L, Jia T, et al. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J Exp Med 2010; 207: 117-128.

https://doi.org/10.1084/jem.20091568

Filiano AJ, Martens LH, Young AH, Warmus BA, Zhou P, Diaz-Ramirez G, et al. Dissociation of frontotemporal dementia-related deficits and neuroinflammation in progranulin haploinsufficient mice. J Neurosci 2013; 33: 5352-5361.

https://doi.org/10.1523/JNEUROSCI.6103-11.2013

Demirhan O, Cekin N, Tastemir D, Tunc E, Guzel AI, Meral D, et al. Are there fetal stem cells in the maternal brain? Neural Regen Res 2013; 8: 593-598.

Kruchen A, Stahl T, Gieseke F, Binder TM, Oezcan Z, Meisel R, et al. Fetomaternal Microchimerism Is Associated with Better Outcome in Haploidentical Hematopoietic Stem Cell Transplantation. Blood 2014; 124: 1242-1242.

https://doi.org/10.1182/blood.V124.21.1242.1242

Lee ES, Bou-Gharios G, Seppanen E, Khosrotehrani K, Fisk NM. Fetal stem cell microchimerism: natural-born healers or killers? Mol Hum Reprod 2010; 16: 869-878.

https://doi.org/10.1093/molehr/gaq067

Wu D, Vu Q, Nguyen A, Stone JR, Stubbs H, Kuhlmann G, et al. In situ genetic analysis of cellular chimerism. Nat Med 2009; 15: 215-219.

https://doi.org/10.1038/nm.1862

Nielsen M, Justesen S, Lund O, Lundegaard C, Buus S. NetMHCIIpan-2.0 - Improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure. Immunome Res 2010; 6: 9.

https://doi.org/10.1186/1745-7580-6-9

Zhang L, Udaka K, Mamitsuka H, Zhu S. Toward more accurate pan-specific MHC-peptide binding prediction: a review of current methods and tools. Brief Bioinform 2012; 13: 350-364.

https://doi.org/10.1093/bib/bbr060

Cómo citar
1.
Sierra-Peláez S, Villegas-Lanau CA. Microquimerismos en la enfermedad de Alzheimer y la demencia frontotemporal. Med. Lab. [Internet]. 1 de julio de 2015 [citado 17 de octubre de 2021];21(7-8):333-48. Disponible en: https://medicinaylaboratorio.com/index.php/myl/article/view/131
Publicado
2015-07-01
Sección
Genética
Crossref Cited-by logo