Aspectos genómicos, transcriptómicos y del diagnóstico en el síndrome de Down

  • David J. Díaz-Hernández Universidad CES
  • Isaura P. Torres-Gómez Universidad CES https://orcid.org/0000-0002-4022-8072
  • Adriana M. Arango-Martínez Dejando Huella Fertilidad
  • Rubén D. Manrique-Hernández Universidad CES
  • Juan E. Gallo-Bonilla Universidad CES
Palabras clave: cromosoma 21, trisomía 21, síndrome de Down, genotipo, fenotipo, ADN libre de células.

Resumen

El síndrome de Down es causado por la presencia de una tercera copia del cromosoma 21 y fue descrito por primera vez en 1838 por Jean-Etienne-Dominique, y más tarde por John Langdon Haydon Down en 1866, mientras trabajaba como superintendente médico en el Asilo Real de Earlswood. Desde ese momento, la comunidad científica puso grandes esfuerzos en tratar de elucidar diversos aspectos que influyen en la naturaleza de esta condición, y que determinan su incidencia y factores de riesgo. De igual manera, se ha puesto interés en los genes involucrados en esta enfermedad, la relación genotipo-fenotipo, la expresión del fenotipo, la variabilidad del material genético y las consecuencias transcripcionales que se producen al tener una tercera copia, ya sea parcial o total, del cromosoma 21. Además, se han invertido esfuerzos en identificar biomarcadores y en diseñar metodologías de diagnóstico prenatal no invasivo que sean altamente eficientes para un mejor diagnóstico del síndrome de Down, y así reducir su impacto negativo en las madres gestantes, al proveerlas de información neutral y precisa acerca de vivir con un hijo con síndrome de Down, y darles autonomía en la decisión de la continuación de su embarazo.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

David J. Díaz-Hernández, Universidad CES

Biólogo, Investigador GenomaCES, Universidad CES. Medellín, Colombia.

Isaura P. Torres-Gómez, Universidad CES

Bacterióloga, MSc y PhD en Biología. Coordinadora de Laboratorio, Genoma CES, Universidad CES. Medellín, Colombia.

Adriana M. Arango-Martínez, Dejando Huella Fertilidad

Médica, Especialista en Ginecología y Obstetricia, MSc en Epidemiología, MSc en Reproducción. Subgerente, Dejando Huella Fertilidad. Medellín, Colombia

Rubén D. Manrique-Hernández, Universidad CES

Químico Farmacéutico, MSc y PhD en Epidemiología. Director de Investigación e Innovación, Universidad CES. Medellín, Colombia.

Juan E. Gallo-Bonilla, Universidad CES

Biotecnólogo, Biólogo Molecular y Microbiólogo, PhD en Ciencias Biomédicas. Director Científico, GenomaCES, Universidad CES. Medellín, Colombia.

Referencias

Cammarata-Scalisi F, Da Silva G, Cammarata- Scalisi G, Sifuentes A. Historia del síndrome de Down. Un recuento lleno de protagonistas. Can Pediatr 2010;34 157-159.

Wang Y, Zhang X, Ling B, He C, Xia Q, Chen F, et al. Molecular detection of trisomy 21 by bicolor competitive fluorescent PCR. J Clin Lab Anal 2013;27:245-248.

https://doi.org/10.1002/jcla.21593

Asim A, Kumar A, Muthuswamy S, Jain S, Agarwal S. "Down syndrome: an insight of the disease". J Biomed Sci 2015;22:41.

https://doi.org/10.1186/s12929-015-0138-y

Sierra-Romero MDC, Navarrete-Hernandez E, Canun-Serrano S, Reyes-Pablo AE, Valdes- Hernandez J. [Prevalence of Down syndrome using certificates of live births and fetal deaths in Mexico 2008-2011]. Bol Med Hosp Infant Mex 2014;71:292-297.

https://doi.org/10.1016/j.bmhimx.2014.09.002

Kamyab AR, Shahrokhi F, Shamsian E, Hayat Nosaied M, Dibajnia P, Hashemi M, et al. Determination of sensitivity and specificity of a novel gene dosage assay for prenatal screening of trisomy 21 syndrome. Clin Biochem 2012;45:267-271.

https://doi.org/10.1016/j.clinbiochem.2011.11.013

Bushman DM, Kaeser GE, Siddoway B, Westra JW, Rivera RR, Rehen SK, et al. Genomic mosaicism with increased amyloid precursor protein (APP) gene copy number in single neu- rons from sporadic Alzheimer's disease brains. Elife 2015;4.

https://doi.org/10.7554/eLife.05116

Patel A, Yamashita N, Ascano M, Bodmer D, Boehm E, Bodkin-Clarke C, et al. RCAN1 links impaired neurotrophin trafficking to aberrant development of the sympathetic nervous system in Down syndrome. Nat Commun 2015;6:10119.

https://doi.org/10.1038/ncomms10119

Souchet B, Latour A, Gu Y, Daubigney F, Paul JL, Delabar JM, et al. Molecular rescue of DYRK1A overexpression in cystathionine beta synthase-deficient mouse brain by enriched environment combined with voluntary exercise. J Mol Neurosci 2015;55:318-323.

https://doi.org/10.1007/s12031-014-0324-5

Al-Biltagi M. Down syndrome from epidemio- logic point of view. EC Paediatrics 2015;2:82-91.

Delabar JM, Theophile D, Rahmani Z, Chettouh Z, Blouin JL, Prieur M, et al. Mole- cular mapping of twenty-four features of Down syndrome on chromosome 21. Eur J Hum Genet 1993;1:114-124.

https://doi.org/10.1159/000472398

Osato M, Ito Y. Increased dosage of the RUNX1/AML1 gene: a third mode of RUNX leukemia? Crit Rev Eukaryot Gene Expr 2005;15:217-228.

https://doi.org/10.1615/CritRevEukarGeneExpr.v15.i3.40

Xavier AC, Ge Y, Taub JW. Down syndrome and malignancies: a unique clinical relationship: a paper from the 2008 william beaumont hos- pital symposium on molecular pathology. J Mol Diagn 2009;11:371-380.

https://doi.org/10.2353/jmoldx.2009.080132

Sussan TE, Yang A, Li F, Ostrowski MC, Ree- ves RH. Trisomy represses Apc(Min)-mediated tumours in mouse models of Down's syndrome. Nature 2008;451:73-75.

https://doi.org/10.1038/nature06446

Baek K-H, Zaslavsky A, Lynch RC, Britt C, Okada Y, Siarey RJ, et al. Down syndrome suppression of tumor growth and the role of the calcineurin inhibitor DSCR1. Nature 2009;459:1126-1130.

https://doi.org/10.1038/nature08062

Salemi M, Barone C, Romano C, Salluzzo R, Caraci F, Cantarella RA, et al. Pericentrin expression in Down's syndrome. Neurol Sci 2013;34:2023-2025.

https://doi.org/10.1007/s10072-013-1529-z

AntonarakisSE.Downsyndromeandthecom- plexity of genome dosage imbalance. Nat Rev Genet 2017;18:147-163.

https://doi.org/10.1038/nrg.2016.154

Olmos-SerranoJL,KangHJ,TylerWA,Silbe- reis JC, Cheng F, Zhu Y, et al. Down syndrome developmental brain transcriptome reveals defective oligodendrocyte differentiation and myelination. Neuron 2016;89:1208-1222.

https://doi.org/10.1016/j.neuron.2016.01.042

Prandini P, Deutsch S, Lyle R, Gagnebin M, Delucinge Vivier C, Delorenzi M, et al. Natural gene-expression variation in Down syndrome modulates the outcome of gene-dosage imba- lance. Am J Hum Genet 2007;81:252-263.

https://doi.org/10.1086/519248

Lim JH, Kim SY, Han JY, Kim MY, Park SY, Ryu HM. Comprehensive investigation of DNA methylation and gene expression in trisomy 21 placenta. Placenta 2016;42:17-24.

https://doi.org/10.1016/j.placenta.2016.03.012

Megarbane A, Ravel A, Mircher C, Sturtz F, Grattau Y, Rethore MO, et al. The 50th anni- versary of the discovery of trisomy 21: the past, present, and future of research and treatment of Down syndrome. Genet Med 2009;11:611-616.

https://doi.org/10.1097/GIM.0b013e3181b2e34c

SinetPM,TheophileD,RahmaniZ,Chettouh Z, Blouin JL, Prieur M, et al. Mapping of the Down syndrome phenotype on chromosome 21 at the molecular level. Biomed Pharmacother 1994;48:247-252.

https://doi.org/10.1016/0753-3322(94)90140-6

Pritchard MA, Kola I. The "gene dosage effect" hypothesis versus the "amplified developmental instability" hypothesis in Down syndrome. J Neural Transm Suppl 1999;57:293-303.

https://doi.org/10.1007/978-3-7091-6380-1_20

Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, et al. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. New York; McGraw-Hill. 2001.

Shapiro BL. Down syndrome-a disruption of homeostasis. Am J Med Genet 1983;14:241-269.

https://doi.org/10.1002/ajmg.1320140206

OlsonLE,RoperRJ,SengstakenCL,Peterson EA, Aquino V, Galdzicki Z, et al. Trisomy for the Down syndrome 'critical region' is necessary but not sufficient for brain phenotypes of trisomic mice. Hum Mol Genet 2007;16:774-782.

https://doi.org/10.1093/hmg/ddm022

Pelleri MC, Gennari E, Locatelli C, Piovesan A, Caracausi M, Antonaros F, et al. Genotype-phenotype correlation for congenital heart disease in Down syndrome through analysis of partial trisomy 21 cases. Genomics 2017;109:391-400.

https://doi.org/10.1016/j.ygeno.2017.06.004

FitzPatrick DR, Ramsay J, McGill NI, Shade M, Carothers AD, Hastie ND. Transcriptome analysis of human autosomal trisomy. Hum Mol Genet 2002;11:3249-3256.

https://doi.org/10.1093/hmg/11.26.3249

Chrast R, Scott HS, Papasavvas MP, Rossier C, Antonarakis ES, Barras C, et al. The mou- se brain transcriptome by SAGE: differences in gene expression between P30 brains of the partial trisomy 16 mouse model of Down syn- drome (Ts65Dn) and normals. Genome Res 2000;10:2006-2021.

https://doi.org/10.1101/gr.10.12.2006

Mao R, Wang X, Spitznagel EL, Jr., Frelin LP, Ting JC, Ding H, et al. Primary and secondary transcriptional effects in the developing human Down syndrome brain and heart. Genome Biol 2005;6:R107.

https://doi.org/10.1186/gb-2005-6-13-r107

Thomas JW, Touchman JW, Blakesley RW, Bouffard GG, Beckstrom-Sternberg SM, Mar- gulies EH, et al. Comparative analyses of multi- species sequences from targeted genomic regions. Nature 2003;424:788-793.

https://doi.org/10.1038/nature01858

Antonarakis SE, Epstein CJ. The challenge of Down syndrome. Trends Mol Med 2006;12:473- 479.

https://doi.org/10.1016/j.molmed.2006.08.005

Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, et al. Presence of fe- tal DNA in maternal plasma and serum. Lancet 1997;350:485-487.

https://doi.org/10.1016/S0140-6736(97)02174-0

Lo YM. Fetal DNA in maternal plasma: biology and diagnostic applications. Clin Chem 2000;46:1903-1906.

Sifakis S, Zaravinos A, Maiz N, Spandidos DA, Nicolaides KH. First-trimester maternal plasma cell-free fetal DNA and preeclampsia. Am J Obstet Gynecol 2009;201:472 e471-477.

https://doi.org/10.1016/j.ajog.2009.05.025

Sifakis S, Koukou Z, Spandidos DA. Cell-free fetal DNA and pregnancy-related complications (review). Mol Med Rep 2015;11:2367-2372.

https://doi.org/10.3892/mmr.2014.3118

Hyland CA, Millard GM, O'Brien H, Schoeman EM, Lopez GH, McGowan EC, et al. Non-invasive fetal RHD genotyping for RhD negative women stratified into RHD gene deletion or variant groups: comparative accuracy using two blood collection tube types. Pathology 2017;49:757-764.

https://doi.org/10.1016/j.pathol.2017.08.010

Chen CP, Wang YL, Chern SR, Wu PS, Chen YN, Chen SW, et al. Prenatal diagnosis and molecular cytogenetic characterization of low- level true mosaicism for trisomy 21 using uncultured amniocytes. Taiwan J Obstet Gynecol 2016;55:285-287.

https://doi.org/10.1016/j.tjog.2016.02.014

Allyse M, Minear MA, Berson E, Sridhar S, Rote M, Hung A, et al. Non-invasive prenatal testing: a review of international implementation and challenges. Int J Womens Health 2015;7:113-126.

https://doi.org/10.2147/IJWH.S67124

Benn P,Cuckle H,Pergament E.Non-invasive prenatal testing for aneuploidy: current status and future prospects. Ultrasound Obstet Gynecol 2013;42:15-33.

https://doi.org/10.1002/uog.12513

Gray KJ, Wilkins-Haug LE. Havewedoneour last amniocentesis? Updates on cell-free DNA for Down syndrome screening. Pediatr Radiol 2018;48:461-470.

https://doi.org/10.1007/s00247-017-3958-y

PapageorgiouEA,FieglerH,RakyanV,Beck S, Hulten M, Lamnissou K, et al. Sites of differential DNA methylation between placenta and peripheral blood: molecular markers for non invasive prenatal diagnosis of aneuploidies. Am J Pathol 2009;174:1609-1618.

https://doi.org/10.2353/ajpath.2009.081038

PatsalisPC.Anewmethodfornon-invasive prenatal diagnosis of Down syndrome using MeDIP real time qPCR. Appl Transl Genom 2012;1:3-8.

https://doi.org/10.1016/j.atg.2012.04.001

Papageorgiou EA, Karagrigoriou A, Tsaliki E, Velissariou V, Carter NP, Patsalis PC. Fetal- specific DNA methylation ratio permits noninvasive prenatal diagnosis of trisomy 21. Nat Med 2011;17:510-513.

https://doi.org/10.1038/nm.2312

Kamhieh-Milz J, Moftah RF, Bal G, Futschik M, Sterzer V, Khorramshahi O, et al. Differentially expressed microRNAs in maternal plasma for the noninvasive prenatal diagnosis of Down syndrome (trisomy 21). Biomed Res Int 2014;2014:402475.

https://doi.org/10.1155/2014/402475

Liao JM, Zhou X, Zhang Y, Lu H. MiR-1246: a new link of the p53 family with cancer and Down syndrome. Cell Cycle 2012;11:2624-2630.

https://doi.org/10.4161/cc.20809

Brás A, Rodrigues AS, Gomes B, Rueff J. Down syndrome and microRNAs. Biomed Rep 2018;8:11-16.

TóthT,FindlayI,PappC,Tóth-PálE,MartonT, Nagy B, et al. Prenatal detection of trisomy 21 and 18 from amniotic fluid by quantitative fluorescent polymerase chain reaction. J Med Genet 1998;35:126-129.

https://doi.org/10.1136/jmg.35.2.126

Sun L, Fan Z, Long J, Weng X, Tang W, Pang W. Rapid prenatal diagnosis of aneuploidy for chromosomes 21, 18, 13, X, and Y using seg- mental duplication quantitative fluorescent PCR (SD-QF-PCR). Gene 2017;627:72-78.

https://doi.org/10.1016/j.gene.2017.06.014

Cómo citar
1.
Díaz-HernándezDJ, Torres-GómezIP, Arango-MartínezAM, Manrique-HernándezRD, Gallo-Bonilla JE. Aspectos genómicos, transcriptómicos y del diagnóstico en el síndrome de Down. Med. Lab. [Internet]. 1 de enero de 2020 [citado 27 de enero de 2020];24(1):37-6. Disponible en: https://medicinaylaboratorio.com/index.php/myl/article/view/13
Publicado
2020-01-01
Sección
Artículos de revisión