Diagnóstico de tuberculosis: desde lo tradicional hasta el desarrollo actual

  • Marisol Jaramillo-Grajales Universidad Nacional de Colombia
  • Robinson A. Torres-Villa Universidad EIA, Universidad CES
  • Elizabeth Pabón-Gelves Universidad Nacional de Colombia
  • Paula A. Marín-Muñoz Universidad EIA
  • Kaory Barrientos-Urdinola Universidad EIA
  • Yeison J. Montagut-Ferizzola Universidad EIA
  • Jaime A. Robledo-Restrepo Universidad Pontificia Bolivariana
Palabras clave: tuberculosis, diagnóstico, biomarcadores, prueba de tuberculina, medios de cultivo, biosensores.

Resumen

La tuberculosis es un problema de salud pública que afecta a millones de personas, siendo la cuarta causa de muerte por enfermedad infecciosa en el mundo. En su más reciente reporte, la Organización Mundial de la Salud (OMS) menciona que la infección tuberculosa es curable con un tratamiento adecuado; sin embargo, es una necesidad la detección precoz de casos y la mejora del diagnóstico como medida de control. En esta revisión se presenta una recopilación de los métodos de detección de tuberculosis desde los tradicionales hasta las nuevas alternativas en desarrollo. Como métodos convencionales de diagnóstico para la detección de la tuberculosis se han usado el examen directo con coloración de esputo y el cultivo para determinar la presencia de la micobacteria; estos métodos presentan desventajas importantes que afectan la sensibilidad y tiempo para el diagnóstico. Recientes avances en pruebas rápidas incluyen el desarrollo de técnicas moleculares e inmunoensayos que pueden detectar micobacterias resistentes a antibióticos y anticuerpos de la respuesta inmune del hospedero. Sin embargo, esta enfermedad no cuenta con una prueba de diagnóstico precisa que permita la detección y el diagnóstico rápido con la mínima pérdida de pacientes. Frente a estos retos, en la actualidad se encuentran en desarrollo nuevas pruebas basadas en biosensores mediante el uso de biomarcadores adecuados de la enfermedad.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Marisol Jaramillo-Grajales, Universidad Nacional de Colombia

Ingeniera Química, MSc en Biotecnología, candidata a PhD en Biotecnología, Universidad Nacional de Colombia, sede Medellín. Docente-Investigador, Universidad EIA. Envigado, Colombia.

Robinson A. Torres-Villa, Universidad EIA, Universidad CES

Ingeniero Electrónico, MSc en Ingeniería, PhD en Ingeniería Electrónica. Docente-Investigador, Universidad EIA y Universidad CES. Envigado, Colombia.

Elizabeth Pabón-Gelves, Universidad Nacional de Colombia

Química, PhD en Química. Profesora-Investigadora, Universidad Nacional de Colombia, sede Medellín. Medellín, Colombia.

Paula A. Marín-Muñoz, Universidad EIA

Bioingeniera, Especialista en Gestión Metrológica Industrial, MSc en Ingeniería Biomédica. Investigadora, Universidad EIA. Envigado, Colombia.

Kaory Barrientos-Urdinola, Universidad EIA

Ingeniera Biomédica. Investigadora, Universidad EIA. Envigado, Colombia.

Yeison J. Montagut-Ferizzola, Universidad EIA

Ingeniero Electrónico, PhD en Ingeniería Electrónica. Docente-Investigador, Universidad EIA. Envigado, Colombia.

Jaime A. Robledo-Restrepo, Universidad Pontificia Bolivariana

Médico, Especialista en Microbiología Médica, PhD en Ciencias Médicas. Investigador, Unidad de Bacteriología y Micobacterias, Corporación para Investigaciones Biológicas (CIB)-Universidad Pontificia Bolivariana (UPB). Medellín, Colombia.

Referencias bibliográficas

World Health Organization. Global tuberculosis report 2015 (ed 20a). Francia: World Health Organization; 2015.

Wu CY, Hu HY, Pu CY, Huang N, Shen HC, Li CP, et al. Pulmonary tuberculosis increases the risk of lung cancer: a population-based cohort study. Cancer 2011; 117: 618-624.

https://doi.org/10.1002/cncr.25616

Stewart BW, Wild CP. World Cancer Report 2014. Francia: International Agency for Research on Cancer; 2014.

Lönnroth K, Raviglione M. Global epidemiology of tuberculosis: prospects for control. Semin Respir Crit Care Med 2008; 29: 481-491.

https://doi.org/10.1055/s-0028-1085700

Stop TB Partnership, World Health Organization. The Stop TB strategy : building on and enhancing DOTS to meet the TB-related Millennium Development Goals. Ginebra, Suiza: World Health Organization; 2006.

Lönnroth K, Jaramillo E, Williams BG, Dye C, Raviglione M. Drivers of tuberculosis epidemics: the role of risk factors and social determinants. Soc Sci Med 2009; 68: 2240-2246.

https://doi.org/10.1016/j.socscimed.2009.03.041

World Health Organization. Gear up to End TB: Introducing the WHO End TB Strategy. 2015. Disponible: http://www.who.int/tb/End_TB_brochure.pdf. Consultado: agosto 2014.

World Health Organization. Xpert MTB/RIF implementation manual. Technical and operational 'how-to': practical considerations. Ginebra, Suiza: WHO Press; 2014.

Lawn SD, Mwaba P, Bates M, Piatek A, Alexander H, Marais BJ, et al. Advances in tuberculosis diagnostics: the Xpert MTB/RIF assay and future prospects for a point-of-care test. Lancet Infect Dis 2013; 13: 349-361.

https://doi.org/10.1016/S1473-3099(13)70008-2

Zhou L, He X, He D, Wang K, Qin D. Biosensing technologies for Mycobacterium tuberculosis detection: status and new developments. Clin Dev Immunol 2011; 2011: 193963.

https://doi.org/10.1155/2011/193963

Pfyffer GE. Mycobacterium: General Characteristics, Laboratory Detection, and Staining. En: Jorgensen JH, Pfaller MA, Carroll KC, Funke G, Landry ML, Richter SS, et al., eds. Manual of Clinical Microbiology. Vol. 1 (ed 11a). Washington D.C., Estados Unidos: ASM Press; 2015: 536-569.

https://doi.org/10.1128/9781555817381.ch30

Glickman MS, Jacobs WR, Jr. Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell 2001; 104: 477-485.

https://doi.org/10.1016/S0092-8674(01)00236-7

Torrelles JB, Schlesinger LS. Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host. Tuberculosis (Edinb) 2010; 90: 84-93.

https://doi.org/10.1016/j.tube.2010.02.003

Schwartzman K. Latent tuberculosis infection: old problem, new priorities. CMAJ 2002; 166: 759-761.

Grzybowski S, Barnett GD, Styblo K. Contacts of cases of active pulmonary tuberculosis. Bull Int Union Tuberc 1975; 50: 90-106.

Sayarlioglu M, Inanc M, Kamali S, Cefle A, Karaman O, Gul A, et al. Tuberculosis in Turkish patients with systemic lupus erythematosus: increased frequency of extrapulmonary localization. Lupus 2004; 13: 274-278.

https://doi.org/10.1191/0961203303lu529xx

Kipp AM, Stout JE, Hamilton CD, Van Rie A. Extrapulmonary tuberculosis, human immunodeficiency virus, and foreign birth in North Carolina, 1993 - 2006. BMC Public Health 2008; 8: 107.

https://doi.org/10.1186/1471-2458-8-107

Pethe K, Alonso S, Biet F, Delogu G, Brennan MJ, Locht C, et al. The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature 2001; 412: 190-194.

https://doi.org/10.1038/35084083

Kong Y, Cave MD, Zhang L, Foxman B, Marrs CF, Bates JH, et al. Association between Mycobacterium tuberculosis Beijing/W lineage strain infection and extrathoracic tuberculosis: Insights from epidemiologic and clinical characterization of the three principal genetic groups of M. tuberculosis clinical isolates. J Clin Microbiol 2007; 45: 409-414.

https://doi.org/10.1128/JCM.01459-06

Webster AS, Shandera WX. The extrapulmonary dissemination of tuberculosis: A meta-analysis. Int J Mycobacteriol 2014; 3: 9-16.

https://doi.org/10.1016/j.ijmyco.2014.01.003

Antony SJ, Harrell V, Christie JD, Adams HG, Rumley RL. Clinical differences between pulmonary and extrapulmonary tuberculosis: a 5-year retrospective study. J Natl Med Assoc 1995; 87: 187-192.

World Health Organization. Global tuberculosis report 2014. Francia: World Health Organization; 2014.

Winn WC, Allen SD, Janda WM, Koneman EW, Procop GW, Schrenckenberger PC, et al. Bacilos grampositivos aerobios y facultativos. En: Koneman Diagnóstico microbiológico (ed 6a). Buenos Aires, Argentina: Editorial Médica Panamericana; 2008: 728-730.

Thanyani ST, Roberts V, Siko DG, Vrey P, Verschoor JA. A novel application of affinity biosensor technology to detect antibodies to mycolic acid in tuberculosis patients. J Immunol Methods 2008; 332: 61-72.

https://doi.org/10.1016/j.jim.2007.12.009

Kunst H. Diagnosis of latent tuberculosis infection: the potential role of new technologies. Respir Med 2006; 100: 2098-2106.

https://doi.org/10.1016/j.rmed.2006.02.032

Araujo Z, Acosta M, Escobar H, Baños R, Fernández de Larrea C, Rivas-Santiago B. Respuesta inmunitaria en tuberculosis y el papel de los antígenos de secreción de Mycobacterium tuberculosis en la protección, patología y diagnóstico: Revisión. Invest Clín 2008; 49: 411-441.

Al Zahrani K, Al Jahdali H, Menzies D. Does size matter? Utility of size of tuberculin reactions for the diagnosis of mycobacterial disease. Am J Respir Crit Care Med 2000; 162: 1419-1422.

https://doi.org/10.1164/ajrccm.162.4.9912048

Caminero Luna JA, Casal Román M, Ausina Ruiz V, Pina Gutiérrez JM, Sauret Valet J. Diagnóstico de la tuberculosis. Arch Bronconeumol 1996; 32: 85-99.

https://doi.org/10.1016/S0300-2896(15)30816-4

Organización Panamericana de la Salud. Manual para el diagnóstico bacteriológico de la tuberculosis. Parte 1. Baciloscopia; 2008.

Frieden TR. Tuberculosis: Detección de casos, tratamiento y vigilancia. Preguntas y respuestas: Kurt Toman (ed 2a). Washington D.C., Estados Unidos: Organización Panamericana de la Salud; 2006.

https://doi.org/10.1590/S0036-46652007000200016

American Thoracic Society, Centers for Disease Control and Prevention. Diagnostic Standards and Classification of Tuberculosis in Adults and Children. This official statement of the American Thoracic Society and the Centers for Disease Control and Prevention was adopted by the ATS Board of Directors, July 1999. This statement was endorsed by the Council of the Infectious Disease Society of America, September 1999. Am J Respir Crit Care Med 2000; 161: 1376-1395.

https://doi.org/10.1164/ajrccm.161.4.16141

Chan ED, Heifets L, Iseman MD. Immunologic diagnosis of tuberculosis: a review. Tuber Lung Dis 2000; 80: 131-140.

https://doi.org/10.1054/tuld.2000.0243

Perkins MD, Roscigno G, Zumla A. Progress towards improved tuberculosis diagnostics for developing countries. Lancet 2006; 367: 942-943.

https://doi.org/10.1016/S0140-6736(06)68386-4

Organización Panamericana de la Salud. Manual para el diagnóstico bacteriológico de la tuberculosis. Parte 2. Cultivo; 2008.

Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C. Tuberculosis. Lancet 2003; 362: 887-899.

https://doi.org/10.1016/S0140-6736(03)14333-4

Cascante JA, Pascal I, Eguía VM, Hueto J. Diagnóstico de la infección tuberculosa. An Sist Sanit Navar 2007; 30: 49-65.

https://doi.org/10.4321/S1137-66272007000400005

Hepple P, Ford N, McNerney R. Microscopy compared to culture for the diagnosis of tuberculosis in induced sputum samples: a systematic review. Int J Tuberc Lung Dis 2012; 16: 579-588.

https://doi.org/10.5588/ijtld.11.0617

Heifetes LB, Good RC. Current Laboratory methods for the diagnosis of tuberculosis. En: Bloom BM, ed. Tuberculosis: Pathogenesis, protection and control. Washington D.C., Estados Unidos: ASM Press; 1994: 85-110.

https://doi.org/10.1128/9781555818357.ch7

Solórzano RF, Varela-Martínez C. Métodos Diagnósticos en Tuberculosis: lo convencional y lo nuevo. Rev Med Hondur 2006; 74: 93-101.

Reino Unido de Gran Bretaña, Department of Health, Public Health England. Molecular diagnosis of tuberculosis: Information for healthcare professionals. Londres, Reino Unido. 2015. Disponible: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/489198/Molecular_diagnosis_of_tuberculosis_for_healthcare_professionals.pdf. Consultado: agosto 2015.

Bekmurzayeva A, Sypabekova M, Kanayeva D. Tuberculosis diagnosis using immunodominant, secreted antigens of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2013; 93: 381-388.

https://doi.org/10.1016/j.tube.2013.03.003

da Silva CF, Ueki SY, Geiger Dde C, Leao SC. hsp65 PCR-restriction enzyme analysis (PRA) for identification of mycobacteria in the clinical laboratory. Rev Inst Med Trop Sao Paulo 2001; 43: 25-28.

https://doi.org/10.1590/S0036-46652001000100005

Katoch V. Advances in Molecular Diagnosis of Tuberculosis. MJAFI 2003; 59.

https://doi.org/10.1016/S0377-1237(03)80001-1

Mallard K, McNerney R, Crampin AC, Houben R, Ndlovu R, Munthali L, et al. Molecular detection of mixed infections of Mycobacterium tuberculosis strains in sputum samples from patients in Karonga District, Malawi. J Clin Microbiol 2010; 48: 4512-4518.

https://doi.org/10.1128/JCM.01683-10

Puerto G, Castro CM, Ribón W. Reacción en cadena de la polimerasa: una contribución para el diagnóstico de la tuberculosis extrapulmonar y de las micobacteriosis. Infectio 2007; 11: 97-100.

Tiwari RP, Hattikudur NS, Bharmal RN, Kartikeyan S, Deshmukh NM, Bisen PS. Modern approaches to a rapid diagnosis of tuberculosis: promises and challenges ahead. Tuberculosis (Edinb) 2007; 87: 193-201.

https://doi.org/10.1016/j.tube.2006.07.005

Pai M, Kalantri S, Dheda K. New tools and emerging technologies for the diagnosis of tuberculosis: part II. Active tuberculosis and drug resistance. Expert Rev Mol Diagn 2006; 6: 423-432.

https://doi.org/10.1586/14737159.6.3.423

World Health Organization, United Nations Children's Fund, Joint United Nations Programme on HIV/AIDS (UNAIDS), Médecins Sans Frontières. Sources and prices of selected medicines and diagnostics for people living with HIV/AIDS (ed 6a). Francia; 2005.

Clayden P, Collins S, Daniels C, Frick M, Harrington M, Horn T, et al. 2013 Pipeline report: HIV, hepatitis C virus (HCV), and tuberculosis (TB) drugs, diagnostics, vaccines, preventive technologies, research toward a cure, and immune-based and gene therapies in development: HIV i-Base/Treatment Action Group; 2013.

Steingart KR, Sohn H, Schiller I, Kloda LA, Boehme CC, Pai M, et al. Xpert(R) MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev 2013; 1: 1-131.

https://doi.org/10.1002/14651858.CD009593.pub2

Simonney N, Labrousse H, Ternynck T, Lagrange PH. Recycling of ELISA plates for the serological diagnosis of tuberculosis using a Mycobacterium tuberculosis-specific glycolipid antigen. J Immunol Methods 1996; 199: 101-105.

https://doi.org/10.1016/S0022-1759(96)00169-X

Moran AJ, Treit JD, Whitney JL, Abomoelak B, Houghton R, Skeiky YA, et al. Assessment of the serodiagnostic potential of nine novel proteins from Mycobacterium tuberculosis. FEMS Microbiol Lett 2001; 198: 31-36.

https://doi.org/10.1111/j.1574-6968.2001.tb10615.x

Abebe F, Holm-Hansen C, Wiker HG, Bjune G. Progress in serodiagnosis of Mycobacterium tuberculosis infection. Scand J Immunol 2007; 66: 176-191.

https://doi.org/10.1111/j.1365-3083.2007.01978.x

Laal S, Skeiky YAW. Immune-Based Methods. En: Cole ST, Davis Eisenach K, McMurray DN, Jacobs WR, Jr., eds. Tuberculosis and the tubercle bacillus. Washington D.C., Estados Unidos: ASM Press; 2005: 71-84.

Wallis RS, Doherty TM, Onyebujoh P, Vahedi M, Laang H, Olesen O, et al. Biomarkers for tuberculosis disease activity, cure, and relapse. Lancet Infect Dis 2009; 9: 162-172.

https://doi.org/10.1016/S1473-3099(09)70042-8

Parida SK, Kaufmann SH. The quest for biomarkers in tuberculosis. Drug Discov Today 2010; 15: 148-157.

https://doi.org/10.1016/j.drudis.2009.10.005

Wallis RS, Pai M, Menzies D, Doherty TM, Walzl G, Perkins MD, et al. Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into practice. Lancet 2010; 375: 1920-1937.

https://doi.org/10.1016/S0140-6736(10)60359-5

Wallis RS, Kim P, Cole S, Hanna D, Andrade BB, Maeurer M, et al. Tuberculosis biomarkers discovery: developments, needs, and challenges. Lancet Infect Dis 2013; 13: 362-372.

https://doi.org/10.1016/S1473-3099(13)70034-3

Bill & Melinda Gates Foundation. Gates Foundation Invests in Cutting-Edge Research to Diagnose Tuberculosis in Developing Countries. 2012. Disponible: http://www.gatesfoundation.org/Media-Center/Press-Releases/2012/02/Gates-Foundation-Invests-in-CuttingEdge-Research-to-Diagnose-Tuberculosis-in-Developing-Countries. Consultado: agosto 2015.

Tynan K, Blasband A, Neuwald P, Penny L, Urdea M. Biomarkers for Infectious Disease Diagnostics in the Developing World : Diagnosis of Tuberculosis in HIV Positive and HIV Negative Individuals. California, Estados Unidos: Halteres Associates, LCC; 2009.

Nagel B, Dellweg H, Gierasch LM. Glossary for chemists of terms used in biotechnology (IUPAC Recommendations 1992). Pure Appl Chem 1992; 64: 143-168.

https://doi.org/10.1351/pac199264010143

Guilbault GG, Pravda M, Kreuzer M, O'Sullivan CK. Biosensors-42 Years and Counting. Anal Lett 2004; 37: 1481-1496.

https://doi.org/10.1081/AL-120037582

Montoya A, Ocampo A, March C. Fundamentals of Piezoelectric Immunosensors. En: Arnau Vives A, ed. Piezoelectric Transducers and Applications (ed 2a). Berlín, Alemania: Springer-Verlag Berlin Heidelberg; 2008: 289-306.

https://doi.org/10.1007/978-3-540-77508-9_12

Anjum V, Pundir C. Biosensors: Future Analytical Tools. Sensors Transd J 2007; 76: 937-944.

He F, Zhang L. Rapid diagnosis of M. tuberculosis using a piezoelectric immunosensor. Anal Sci 2002; 18: 397-401.

https://doi.org/10.2116/analsci.18.397

Hiatt LA, Cliffel DE. Real-time Recognition of Mycobacterium tuberculosis and Lipoarabinomannan using the Quartz Crystal Microbalance. Sens Actuators B Chem 2012; 174: 245-252.

https://doi.org/10.1016/j.snb.2012.06.095

Ren J, He F, Yi S, Cui X. A new MSPQC for rapid growth and detection of Mycobacterium tuberculosis. Biosens Bioelectron 2008; 24: 403-409.

https://doi.org/10.1016/j.bios.2008.04.018

McNerney R, Wondafrash BA, Amena K, Tesfaye A, McCash EM, Murray NJ. Field test of a novel detection device for Mycobacterium tuberculosis antigen in cough. BMC Infect Dis 2010; 10: 161.

https://doi.org/10.1186/1471-2334-10-161

Chun AL. Nanoparticles offer hope for TB detection. Nat Nanotechnol 2009; 4: 698-699.

https://doi.org/10.1038/nnano.2009.322

Lee H, Sun E, Ham D, Weissleder R. Chip-NMR biosensor for detection and molecular analysis of cells. Nat Med 2008; 14: 869-874.

https://doi.org/10.1038/nm.1711

Diaz-Gonzalez M, Gonzalez-Garcia MB, Costa-Garcia A. Immunosensor for Mycobacterium tuberculosis on screen-printed carbon electrodes. Biosens Bioelectron 2005; 20: 2035-2043.

https://doi.org/10.1016/j.bios.2004.09.035

Wang S, Inci F, De Libero G, Singhal A, Demirci U. Point-of-care assays for tuberculosis: role of nanotechnology/microfluidics. Biotechnol Adv 2013; 31: 438-449.

https://doi.org/10.1016/j.biotechadv.2013.01.006

Thiruppathiraja C, Kamatchiammal S, Adaikkappan P, Santhosh DJ, Alagar M. Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor. Anal Biochem 2011; 417: 73-79.

https://doi.org/10.1016/j.ab.2011.05.034

Costa P, Amaro A, Botelho A, Inacio J, Baptista PV. Gold nanoprobe assay for the identification of mycobacteria of the Mycobacterium tuberculosis complex. Clin Microbiol Infect 2010; 16: 1464-1469.

https://doi.org/10.1111/j.1469-0691.2010.03120.x

World Health Organization. Global tuberculosis report 2013. Francia: World Health Organization; 2013.

UNITAID. Tuberculosis: Diagnostics Technology and Market Landscape (ed 2a). Suiza: World Health Organization; 2013.

Treatment Action Group. 2015 Report on Tuberculosis. Research Funding Trends, 2005-2014: A Decade of Data. Nueva York, Estados Unidos: Stop TB Partnership; 2015.

World Health Organization, Stop TB Partnership. The global plan to stop TB 2011-2015. Ginebra, Suiza: WHO Press. 2010. Disponible: http://www.stoptb.org/assets/documents/global/plan/tb_globalplantostoptb2011-2015.pdf. Consultado: agosto 2015.

Cómo citar
1.
Jaramillo-Grajales M, Torres-Villa RA, Pabón-Gelves E, Marín-Muñoz PA, Barrientos-Urdinola K, Montagut-Ferizzola YJ, Robledo-Restrepo JA. Diagnóstico de tuberculosis: desde lo tradicional hasta el desarrollo actual. Med. Lab. [Internet]. 1 de julio de 2015 [citado 17 de octubre de 2021];21(7-8):311-32. Disponible en: https://medicinaylaboratorio.com/index.php/myl/article/view/129
Publicado
2015-07-01
Sección
La Clínica y el Laboratorio
Crossref Cited-by logo