Principales herramientas epigenéticas para el diagnóstico y seguimiento de neoplasias hematológicas
Resumen
El análisis exhaustivo de los patrones de metilación del ADN es una parte fundamental para entender las bases moleculares del desarrollo y progresión de las neoplasias hematológicas, debido a que la hipermetilación en regiones promotoras afecta directamente vías carcinogénicas y conduce a la inactivación de genes involucrados en procesos celulares fundamentales como el ciclo celular y la apoptosis. En esta revisión de literatura se presenta una descripción de las técnicas más utilizadas para el estudio de la metilación: la reacción en cadena de la polimerasa específica de la metilación (MSP), el análisis combinado restricción bisulfito (COBRA), la secuenciación dependiente de bisulfito (BSP), la pirosecuenciación con bisulfito y las técnicas basadas en micromatrices; describiendo su principio, aplicación en la investigación de las neoplasias hematológicas y algunas de sus fortalezas y debilidades.
Descargas
Referencias bibliográficas
Ngalamika O, Zhang Y, Yin H, Zhao M, Gershwin ME, Lu Q. Epigenetics, autoimmunity and hematologic malignancies: a comprehensive review. J Autoimmun 2012; 39: 451-465.
https://doi.org/10.1016/j.jaut.2012.09.002
Han Y, Ren J, Yu W, Terashima M, Muegge K. Malignant Transformation and Epigenetics. En: Lu Q, Chang CC, Richardson BC, eds. Epigenetics and Dermatology. Boston, Estados Unidos: Academic Press; 2015: 113-135.
https://doi.org/10.1016/B978-0-12-800957-4.00007-2
Ntziachristos P, Mullenders J, Trimarchi T, Aifantis I. Mechanisms of epigenetic regulation of leukemia onset and progression. Adv Immunol 2013; 117: 1-38.
https://doi.org/10.1016/B978-0-12-410524-9.00001-3
Baer C, Plass C. Aberrant DNA Methylation. En: Caplan MJ, Boron WF, Boulpaep EL, Bradshaw RA, Bylund DB, Carlson BM, et al., eds. Reference Module in Biomedical Sciences. Amsterdam, Paises Bajos: Elsevier B.V.; 2014.
https://doi.org/10.1016/B978-0-12-801238-3.00008-8
Melki JR, Clark SJ. DNA methylation changes in leukaemia. Semin Cancer Biol 2002; 12: 347-357.
https://doi.org/10.1016/S1044-579X(02)00055-X
Uehara E, Takeuchi S, Yang Y, Fukumoto T, Matsuhashi Y, Tamura T, et al. Aberrant methylation in promoter-associated CpG islands of multiple genes in chronic myelogenous leukemia blast crisis. Oncol Lett 2012; 3: 190-192.
https://doi.org/10.3892/ol.2011.419
You R-I, Ho C-L, Hung H-M, Hsieh Y-F, Ju J-C, Chao T-Y. Identification of DNA methylation biomarkers in imatinib-resistant chronic myeloid leukemia cells. Genomic Med Biomarkers Health Sci 2012; 4: 12-15.
https://doi.org/10.1016/j.gmbhs.2012.04.010
Pehlivan M, Sercan Z, Sercan HO. sFRP1 promoter methylation is associated with persistent Philadelphia chromosome in chronic myeloid leukemia. Leuk Res 2009; 33: 1062-1067.
https://doi.org/10.1016/j.leukres.2008.11.013
Nagy E, Beck Z, Kiss A, Csoma E, Telek B, Konya J, et al. Frequent methylation of p16INK4A and p14ARF genes implicated in the evolution of chronic myeloid leukaemia from its chronic to accelerated phase. Eur J Cancer 2003; 39: 2298-2305.
https://doi.org/10.1016/S0959-8049(03)00552-5
Vecchio L, Seke Etet PF, Kipanyula MJ, Krampera M, Nwabo Kamdje AH. Importance of epigenetic changes in cancer etiology, pathogenesis, clinical profiling, and treatment: what can be learned from hematologic malignancies? Biochim Biophys Acta 2013; 1836: 90-104.
https://doi.org/10.1016/j.bbcan.2013.04.001
Galm O, Herman JG, Baylin SB. The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev 2006; 20: 1-13.
https://doi.org/10.1016/j.blre.2005.01.006
French SW, Dawson DW, Miner MD, Doerr JR, Malone CS, Wall R, et al. DNA methylation profiling: a new tool for evaluating hematologic malignancies. Clin Immunol 2002; 103: 217-230.
https://doi.org/10.1006/clim.2002.5186
Jorda M, Peinado MA. Methods for DNA methylation analysis and applications in colon cancer. Mutat Res 2010; 693: 84-93.
https://doi.org/10.1016/j.mrfmmm.2010.06.010
Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983; 301: 89-92.
https://doi.org/10.1038/301089a0
Singer-Sam J, Grant M, LeBon JM, Okuyama K, Chapman V, Monk M, et al. Use of a HpaII-polymerase chain reaction assay to study DNA methylation in the Pgk-1 CpG island of mouse embryos at the time of X-chromosome inactivation. Mol Cell Biol 1990; 10: 4987-4989.
https://doi.org/10.1128/MCB.10.9.4987
Sepulveda AR, Jones D, Ogino S, Samowitz W, Gulley ML, Edwards R, et al. CpG methylation analysis--current status of clinical assays and potential applications in molecular diagnostics: a report of the Association for Molecular Pathology. J Mol Diagn 2009; 11: 266-278.
https://doi.org/10.2353/jmoldx.2009.080125
Rother KI, Silke J, Georgiev O, Schaffner W, Matsuo K. Influence of DNA sequence and methylation status on bisulfite conversion of cytosine residues. Anal Biochem 1995; 231: 263-265.
https://doi.org/10.1006/abio.1995.1530
Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 1996; 93: 9821-9826.
https://doi.org/10.1073/pnas.93.18.9821
Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res 2001; 61: 3225-3229.
Galm O, Yoshikawa H, Esteller M, Osieka R, Herman JG. SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood 2003; 101: 2784-2788.
https://doi.org/10.1182/blood-2002-06-1735
Sasaki M, Anast J, Bassett W, Kawakami T, Sakuragi N, Dahiya R. Bisulfite conversion-specific and methylation-specific PCR: a sensitive technique for accurate evaluation of CpG methylation. Biochem Biophys Res Commun 2003; 309: 305-309.
https://doi.org/10.1016/j.bbrc.2003.08.005
Munson K, Clark J, Lamparska-Kupsik K, Smith SS. Recovery of bisulfite-converted genomic sequences in the methylation-sensitive QPCR. Nucleic Acids Res 2007; 35: 2893-2903.
https://doi.org/10.1093/nar/gkm055
Sriraksa R, Chaopatchayakul P, Jearanaikoon P, Leelayuwat C, Limpaiboon T. Verification of complete bisulfite modification using Calponin-specific primer sets. Clin Biochem 2010; 43: 528-530.
https://doi.org/10.1016/j.clinbiochem.2009.11.005
Hernandez HG, Tse MY, Pang SC, Arboleda H, Forero DA. Optimizing methodologies for PCR-based DNA methylation analysis. Biotechniques 2013; 55: 181-197.
https://doi.org/10.2144/000114087
Wang YL, Qian J, Lin J, Yao DM, Qian Z, Zhu ZH, et al. Methylation status of DDIT3 gene in chronic myeloid leukemia. J Exp Clin Cancer Res 2010; 29: 54.
https://doi.org/10.1186/1756-9966-29-54
Bodoor K, Haddad Y, Alkhateeb A, Al-Abbadi A, Dowairi M, Magableh A, et al. DNA hypermethylation of cell cycle (p15 and p16) and apoptotic (p14, p53, DAPK and TMS1) genes in peripheral blood of leukemia patients. Asian Pac J Cancer Prev 2014; 15: 75-84.
https://doi.org/10.7314/APJCP.2014.15.1.75
Ahmad I, Mir R, Javid J, Farooq S, Yadav P, Zuberi M, et al. Epigenetic Silencing of P16 (INK4a) Gene by Promoter Hypermethylation in Chronic Myelogenous Leukemia. Clin Lymphoma Myeloma Leuk 2014; 14: S139.
https://doi.org/10.1016/j.clml.2014.06.072
Li Y, Yang L, Pan Y, Yang J, Shang Y, Luo J. Methylation and decreased expression of SHP-1 are related to disease progression in chronic myelogenous leukemia. Oncol Rep 2014; 31: 2438-2446.
https://doi.org/10.3892/or.2014.3098
San Jose-Eneriz E, Agirre X, Jimenez-Velasco A, Cordeu L, Martin V, Arqueros V, et al. Epigenetic down-regulation of BIM expression is associated with reduced optimal responses to imatinib treatment in chronic myeloid leukaemia. Eur J Cancer 2009; 45: 1877-1889.
https://doi.org/10.1016/j.ejca.2009.04.005
Qian J, Qian Z, Lin J, Yao DM, Chen Q, Li Y, et al. Abnormal methylation of GRAF promoter Chinese patients with acute myeloid leukemia. Leuk Res 2011; 35: 783-786.
https://doi.org/10.1016/j.leukres.2010.10.013
Benetatos L, Hatzimichael E, Dasoula A, Dranitsaris G, Tsiara S, Syrrou M, et al. CpG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes. Leuk Res 2010; 34: 148-153.
https://doi.org/10.1016/j.leukres.2009.06.019
Yao DM, Qian J, Lin J, Wang YL, Chen Q, Qian Z, et al. Aberrant methylation of CCAAT/enhancer binding protein zeta promoter in acute myeloid leukemia. Leuk Res 2011; 35: 957-960.
https://doi.org/10.1016/j.leukres.2010.10.031
Xu Z, Wang M, Wang L, Wang Y, Zhao X, Rao Q, et al. Aberrant expression of TSC2 gene in the newly diagnosed acute leukemia. Leuk Res 2009; 33: 891-897.
https://doi.org/10.1016/j.leukres.2009.01.041
Ghasemi A, Rostami S, Chahardouli B, Alizad Ghandforosh N, Ghotaslou A, Nadali F. Study of SFRP1 and SFRP2 methylation status in patients with de novo Acute Myeloblastic Leukemia. Int J Hematol Oncol Stem Cell Res 2015; 9: 15-21.
Tao YF, Xu LX, Lu J, Cao L, Li ZH, Hu SY, et al. Metallothionein III (MT3) is a putative tumor suppressor gene that is frequently inactivated in pediatric acute myeloid leukemia by promoter hypermethylation. J Transl Med 2014; 12: 182.
https://doi.org/10.1186/1479-5876-12-182
Paixao VA, Vidal DO, Caballero OL, Vettore AL, Tone LG, Ribeiro KB, et al. Hypermethylation of CpG island in the promoter region of CALCA in acute lymphoblastic leukemia with central nervous system (CNS) infiltration correlates with poorer prognosis. Leuk Res 2006; 30: 891-894.
https://doi.org/10.1016/j.leukres.2005.11.016
Forsterova K, Votavova H, Schwarz J, Karban J, Stuka C, Trneny M. Advanced rai stage in patients with chronic lymphocytic leukaemia correlates with simultaneous hypermethylation of plural tumour suppressor genes. Folia Biol (Praha) 2010; 56: 158-164.
Montiel-Duarte C, Cordeu L, Agirre X, Roman-Gomez J, Jimenez-Velasco A, Jose-Eneriz ES, et al. Resistance to Imatinib Mesylate-induced apoptosis in acute lymphoblastic leukemia is associated with PTEN down-regulation due to promoter hypermethylation. Leuk Res 2008; 32: 709-716.
https://doi.org/10.1016/j.leukres.2007.09.005
Shen L, Waterland RA. Methods of DNA methylation analysis. Curr Opin Clin Nutr Metab Care 2007; 10: 576-581.
https://doi.org/10.1097/MCO.0b013e3282bf6f43
Xiong Z, Laird PW. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 1997; 25: 2532-2534.
https://doi.org/10.1093/nar/25.12.2532
Brena RM, Auer H, Kornacker K, Hackanson B, Raval A, Byrd JC, et al. Accurate quantification of DNA methylation using combined bisulfite restriction analysis coupled with the Agilent 2100 Bioanalyzer platform. Nucleic Acids Res 2006; 34: e17.
https://doi.org/10.1093/nar/gnj017
Chen HC, Chang YS, Chen SJ, Chang PL. Determination of the heterogeneity of DNA methylation by combined bisulfite restriction analysis and capillary electrophoresis with laser-induced fluorescence. J Chromatogr A 2012; 1230: 123-129.
https://doi.org/10.1016/j.chroma.2012.01.049
Kneip C, Schmidt B, Fleischhacker M, Seegebarth A, Lewin J, Flemming N, et al. A novel method for sensitive and specific detection of DNA methylation biomarkers based on DNA restriction during PCR cycling. Biotechniques 2009; 47: 737-744.
https://doi.org/10.2144/000113208
Wang CX, Wang X, Liu HB, Zhou ZH. Aberrant DNA methylation and epigenetic inactivation of hMSH2 decrease overall survival of acute lymphoblastic leukemia patients via modulating cell cycle and apoptosis. Asian Pac J Cancer Prev 2014; 15: 355-362.
https://doi.org/10.7314/APJCP.2014.15.1.355
Hesson LB, Dunwell TL, Cooper WN, Catchpoole D, Brini AT, Chiaramonte R, et al. The novel RASSF6 and RASSF10 candidate tumour suppressor genes are frequently epigenetically inactivated in childhood leukaemias. Mol Cancer 2009; 8: 42.
https://doi.org/10.1186/1476-4598-8-42
Thathia SH, Ferguson S, Gautrey HE, van Otterdijk SD, Hili M, Rand V, et al. Epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia modulates proliferation, cell survival and chemosensitivity. Haematologica 2012; 97: 371-378.
https://doi.org/10.3324/haematol.2011.049593
Strathdee G, Holyoake TL, Sim A, Parker A, Oscier DG, Melo JV, et al. Inactivation of HOXA genes by hypermethylation in myeloid and lymphoid malignancy is frequent and associated with poor prognosis. Clin Cancer Res 2007; 13: 5048-5055.
https://doi.org/10.1158/1078-0432.CCR-07-0919
Wattanawaraporn R, Singhsilarak T, Nuchprayoon I, Mutirangura A. Hypermethylation of TTC12 gene in acute lymphoblastic leukemia. Leukemia 2007; 21: 2370-2373.
https://doi.org/10.1038/sj.leu.2404876
Irving L, Mainou-Fowler T, Parker A, Ibbotson RE, Oscier DG, Strathdee G. Methylation markers identify high risk patients in IGHV mutated chronic lymphocytic leukemia. Epigenetics 2011; 6: 300-306.
https://doi.org/10.4161/epi.6.3.14038
Jiang M, Zhang Y, Fei J, Chang X, Fan W, Qian X, et al. Rapid quantification of DNA methylation by measuring relative peak heights in direct bisulfite-PCR sequencing traces. Lab Invest 2010; 90: 282-290.
https://doi.org/10.1038/labinvest.2009.132
Applied Biosystems. Methylation Analysis by Bisulfite Sequencing: Chemistry, Products and Protocols from Applied Biosystems. 2007.
Clark SJ, Statham A, Stirzaker C, Molloy PL, Frommer M. DNA methylation: bisulphite modification and analysis. Nat Protoc 2006; 1: 2353-2364.
https://doi.org/10.1038/nprot.2006.324
Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 1992; 89: 1827-1831.
https://doi.org/10.1073/pnas.89.5.1827
Warnecke PM, Stirzaker C, Song J, Grunau C, Melki JR, Clark SJ. Identification and resolution of artifacts in bisulfite sequencing. Methods 2002; 27: 101-107.
https://doi.org/10.1016/S1046-2023(02)00060-9
Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res 2001; 29: E65-65.
https://doi.org/10.1093/nar/29.13.e65
Lewin J, Schmitt AO, Adorjan P, Hildmann T, Piepenbrock C. Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of PCR amplificates. Bioinformatics 2004; 20: 3005-3012.
https://doi.org/10.1093/bioinformatics/bth346
Colella S, Shen L, Baggerly KA, Issa JP, Krahe R. Sensitive and quantitative universal Pyrosequencing methylation analysis of CpG sites. Biotechniques 2003; 35: 146-150.
https://doi.org/10.2144/03351md01
Tost J, Dunker J, Gut IG. Analysis and quantification of multiple methylation variable positions in CpG islands by Pyrosequencing. Biotechniques 2003; 35: 152-156.
https://doi.org/10.2144/03351md02
Kim SY, Hwang SH, Song EJ, Shin HJ, Jung JS, Lee EY. Level of HOXA5 hypermethylation in acute myeloid leukemia is associated with short-term outcome. Korean J Lab Med 2010; 30: 469-473.
https://doi.org/10.3343/kjlm.2010.30.5.469
Baragano Raneros A, Martin-Palanco V, Fernandez AF, Rodriguez RM, Fraga MF, Lopez-Larrea C, et al. Methylation of NKG2D ligands contributes to immune system evasion in acute myeloid leukemia. Genes Immun 2015; 16: 71-82.
https://doi.org/10.1038/gene.2014.58
Li ZG, Jiao Y, Li WJ, Deng GR, Cui L, Gao C, et al. Hypermethylation of two CpG sites upstream of CASP8AP2 promoter influences gene expression and treatment outcome in childhood acute lymphoblastic leukemia. Leuk Res 2013; 37: 1287-1293.
https://doi.org/10.1016/j.leukres.2013.07.018
Bohne A, Schlee C, Mossner M, Thibaut J, Heesch S, Thiel E, et al. Epigenetic control of differential expression of specific ERG isoforms in acute T-lymphoblastic leukemia. Leuk Res 2009; 33: 817-822.
https://doi.org/10.1016/j.leukres.2008.11.012
Queiros AC, Villamor N, Clot G, Martinez-Trillos A, Kulis M, Navarro A, et al. A B-cell epigenetic signature defines three biologic subgroups of chronic lymphocytic leukemia with clinical impact. Leukemia 2014; Sep 19 [Epub ahead of print].
https://doi.org/10.1038/leu.2014.252
Romero A, Blanco F. Aplicación de los microarrays en el laboratorio clínico. Ed Cont Lab Clín 2012; 15: 112-118.
Wilhelm-Benartzi CS, Koestler DC, Karagas MR, Flanagan JM, Christensen BC, Kelsey KT, et al. Review of processing and analysis methods for DNA methylation array data. Br J Cancer 2013; 109: 1394-1402.
https://doi.org/10.1038/bjc.2013.496
Heyn H, Esteller M. DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet 2012; 13: 679-692.
https://doi.org/10.1038/nrg3270
Jiang Q, Liu CX, Gu X, Wilt G, Shaffer J, Zhang Y, et al. EpiTect Methyl II PCR Array System: A simple tool for screening regional DNA methylation of a large number of genes or samples without bisulfite conversion. SABiosciences, Qiagen. 2012. Disponible: http://www.sabiosciences.com/manuals/WP_ADNA_EpiTectMethyl2.pdf. Consultado: febrero 2015.
Schumacher A, Kapranov P, Kaminsky Z, Flanagan J, Assadzadeh A, Yau P, et al. Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Res 2006; 34: 528-542.
https://doi.org/10.1093/nar/gkj461
Bock C. Analysing and interpreting DNA methylation data. Nat Rev Genet 2012; 13: 705-719.
https://doi.org/10.1038/nrg3273
Chin YM, Mohd-Yacob A, Ramachandran S, Zakaria Z. DNA Methylation of SLC5A8, a Tumor Suppressor Gene in Chronic Myeloid Leukemia. IJHSR 2014; 4: 55-60.
Stumpel DJ, Schneider P, van Roon EH, Boer JM, de Lorenzo P, Valsecchi MG, et al. Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 2009; 114: 5490-5498.
https://doi.org/10.1182/blood-2009-06-227660
Vilas-Zornoza A, Agirre X, Martin-Palanco V, Martin-Subero JI, San Jose-Eneriz E, Garate L, et al. Frequent and simultaneous epigenetic inactivation of TP53 pathway genes in acute lymphoblastic leukemia. PLoS One 2011; 6: e17012.
https://doi.org/10.1371/journal.pone.0017012
Wilop S, Fernandez AF, Jost E, Herman JG, Brummendorf TH, Esteller M, et al. Array-based DNA methylation profiling in acute myeloid leukaemia. Br J Haematol 2011; 155: 65-72.
https://doi.org/10.1111/j.1365-2141.2011.08801.x
Kurkjian C, Kummar S, Murgo AJ. DNA methylation: its role in cancer development and therapy. Curr Probl Cancer 2008; 32: 187-235.
https://doi.org/10.1016/j.currproblcancer.2008.08.002
Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 2000; 28: E32.
https://doi.org/10.1093/nar/28.8.e32
Wojdacz TK, Dobrovic A, Hansen LL. Methylation-sensitive high-resolution melting. Nat Protoc 2008; 3: 1903-1908.
https://doi.org/10.1038/nprot.2008.191
Zeschnigk M, Bohringer S, Price EA, Onadim Z, Masshofer L, Lohmann DR. A novel real-time PCR assay for quantitative analysis of methylated alleles (QAMA): analysis of the retinoblastoma locus. Nucleic Acids Res 2004; 32: e125.
https://doi.org/10.1093/nar/gnh122
Gonzalgo ML, Jones PA. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res 1997; 25: 2529-2531.